STORMWATER MANAGEMENT, GROUNDWATER RECHARGE AND WATER QUALITY ANALYSIS

For

InSite Development Partners, LLC

Proposed 4-Story Self Storage Facility

US Route 22 & Wilson Avenue Block 119.00, Lot 1.01 Borough of North Plainfield Somerset County, New Jersey

Prepared by:

1904 Main Street Lake Como, NJ 07719 (732) 974-0198

Thomas J. Muller, PE, PP / NJ Professional Engineer License #52179

> September 2022 DEC# 3041-99-010

TABLE OF CONTENTS

Section	<u>Page</u>
I.	Site Description
II.	Design Overview
III.	Existing Drainage Conditions
IV.	Proposed Drainage Conditions
V.	Design Methodology
VI.	Runoff Rate Reduction Performance4
VII.	Pervious Pavement System Design5
IX.	Water Quality6
X.	Groundwater Recharge
XI.	Conclusion6

APPENDIX

- NRCS Web Soil Survey
- Runoff Curve Number (CN) Calculations Existing
- Runoff Curve Number (CN) Calculations Proposed
- Hydrograph Summary Reports Existing and Proposed Conditions 2yr. 10 yr. & 100 yr.
- Hydrograph Summary Reports Water Quality Storm
- Stormwater Collection System Calculations (Pipesizing)
- Report of Preliminary Geotechnical and Stormwater Basin Area Investigation, prepared by Dynamic Earth, LLC
- Drainage Area Maps

I. SITE DESCRIPTION

The project area is comprised of Block 119.00, Lot 1.01 in the Borough of North Plainfield, Somerset County,

New Jersey. The property is located at the corner of US Route 22 and Wilson Avenue. The project consists of

constructing a 4-story Self-Storage Facility with a footprint of 29,779 SF and a gross floor area of 119,116 SF,

with 12 parking stalls and drive-in overhead doors located around the building. Additional site improvements

include grading, landscaping, lighting, and stormwater management facilities. The amount of proposed

impervious coverage for the subject development is 62,486 SF.

The subject site is bordered to the north by residential dwellings with commercial uses and Ridge Avenue

beyond, to the west by residential dwellings and Wilson Avenue with residential dwellings and commercial uses

beyond, to the south by US Route 22 with commercial and residential uses beyond, and to the east by

commercial uses with US Route 22 and commercial uses beyond.

The existing conditions of the tract have been verified by the ALTA/NSPS Land Title Survey, prepared by

Dynamic Survey, LLC, dated July 20, 2021, last revised May 13, 2022.

II. DESIGN OVERVIEW

This report has been prepared to define and analyze the stormwater drainage conditions that will occur as a

result of the redevelopment of Block 119.00, Lot 1.01 in the Borough of North Plainfield, Somerset County,

New Jersey.

This Stormwater Management Study identifies and describes the manner by which the design and performance

measures set forth by N.J.A.C. 7:8 and the Borough of North Plainfield Ordinance are achieved to minimize

the adverse impact of stormwater runoff quantity and quality in receiving drainage facilities and groundwater

recharge into subsurface soils. The study has been prepared in accordance with N.J.A.C. 7:8 Stormwater

Management. The scope of the study includes the building, associated driveway, parking and loading areas,

landscaping, stormwater collection system, underground pervious pavement system, and other associated

improvements as shown on the accompanying engineering drawings.

Based upon the scope of the project, the development is classified as a major development as it disturbs more

than one (1) acre of land and increases the amount of impervious coverage onsite by more than 1/4 acre; therefore,

the project has been designed to meet the groundwater recharge, stormwater runoff quantity and quality

standards set forth under N.J.A.C. 7:8. Accordingly, the following items are addressed within this report:

• Green infrastructure standards (7:8-5.3)

Groundwater recharge standards (7:8-5.4)

• Stormwater runoff quality standards (7:8-5.5)

InSite Development Partners, LLC DEC#3041-99-010

September 2022

• Stormwater runoff quantity standards (7:8-5.6)

Calculation of stormwater runoff and groundwater recharge (7:8-5.7)

A Hydrological evaluation is provided for the 2, 10, and 100 year storm events utilizing the Urban Hydrology for Small Watershed TR55 method. The TR55 method is utilized to design the proposed aboveground bioretention basin facilities.

The NJDEP flow reduction requirements are as follows:

2-year:

50% reduction

10-year:

25% reduction

100-year:

20% reduction

It is also the intention of the design of this facility to comply with the Stormwater Management Best Management Practices.

III. EXISTING DRAINAGE CONDITIONS

The subject parcel is currently developed as a retail building with associated parking areas, driveways, landscaping, and other associated site amenities. The existing conditions of the tract have been verified by the ALTA/NSPS Land Title Survey, prepared by Dynamic Survey, LLC, dated July 20, 2021, last revised May 13, 2022. This information has been utilized to establish an Existing Conditions Drainage Area Map which is included within the Appendix of this Report.

The tract has been evaluated with the following existing drainage sub-watershed areas:

Study Area Site: This area consists of the entirety of the proposed development, which includes the existing building, parking, driveways, walkways, landscaping and open space. The stormwater runoff from this area flows overland towards the existing stormwater conveyance system located onsite. The stormwater from this area is ultimately tributary to the existing drainage facilities located within Wilson Avenue and US Route 22.

Based on Somerset County soils survey information, the soil types native to the site include:

S	OMERSET COUNTY SOIL SURV	EY INFORMATION
SOIL TYPE (SYMBOL)	SOIL TYPE (NAME)	HYDROLOGIC SOIL GROUP (HSG)
AmdB	Amwell gravelly loam, 2 to 6 percent	С
	slopes	
DunC	Dunellen sandy loam, 8 to 15 percent slopes	A

IV. PROPOSED DRAINAGE CONDITIONS

The proposed development on Block 119.00, Lot 1.01, includes the construction of a 4-story Self-Storage Facility

with a footprint of 29,779 SF and a gross floor area of 119,116 SF, with 12 parking stalls and drive-in overhead

doors located around the building. Additional site improvements include grading, landscaping, lighting, and

stormwater management facilities. The stormwater management facilities include a pervious pavement system

with underground storage that consists of 15" perforated HDPE pipe and two (2) underground R-Tank basins.

The tract has been evaluated with the following drainage sub-watershed areas as depicted on the Proposed

Conditions Drainage Area Map:

Study Area Basin: This area consists of the proposed self-storage building, parking areas, drive aisles, and grass

areas to the north of the proposed building. Stormwater runoff from these areas is collected by the pervious

pavement system and routed to the proposed underground storage system. The stormwater is then released at a

controlled rate and routed to the existing drainage facilities located within US Route 22.

Study Area Undetained: This area consists of portions of the driveway along Wilson Avenue and near the

adjacent bank as well as the proposed landscaped areas to the south of the proposed building. Stormwater runoff

from these areas flows via overland flow to the existing drainage facilities located within Wilson Avenue and

US Route 22.

V. DESIGN METHODOLOGY

In order to prepare the stormwater management, water quality and groundwater recharge design system for the

subject project, extensive up-front investigation of the property and topography was performed. On-site review

of the tract was initially performed by Dynamic Engineering Consultants, PC to verify existing site conditions

and land cover characteristics. Dynamic Survey, LLC was contracted to prepare an overall location and

topographical survey for the existing site and surrounding watershed areas.

Furthermore, Dynamic Earth, LLC performed test pits within the site to establish the seasonal high-water table

and soil permeability rates.

Based on our review of the existing site conditions and the Topographic Survey, the Drainage Area Maps for

the existing and proposed site conditions as defined within this report were established. A grading plan was

developed for the proposed site improvements with consideration to the existing drainage patterns. The plan

was designed to ensure runoff from the proposed development could be directed to stormwater management

facilities in order to address the applicable sections of the Borough of North Plainfield Land Development

Ordinance and N.J.A.C. 7:8.

InSite Development Partners, LLC DEC#3041-99-010

September 2022

Stormwater runoff from the majority of the proposed development is collected by the on-site stormwater collection system or conveyed by overland flow to the pervious pavement system. Stormwater runoff from the proposed building is routed through the roof leader conveyance system and is tributary to the on-site stormwater collection system. An outlet control structure has been implemented at the southeastern portion of the underground R-Tank storage bed to release stormwater runoff at a controlled rate to satisfy the stormwater quantity requirements of N.J.A.C. 7:8.

The majority of the site will be collected via a pervious pavement system and is ultimately connected via an underground storm sewer system to the underground R-Tank storage beds. The stormwater from the underground R-Tank storage beds is discharged by an outlet control structure where it is routed to the existing drainage facilities located within US Route 22. In addition, the design of the pervious pavement complies with the standards set forth by the NJ Stormwater Best Management Practices Manual, thereby providing a TSS Removal Rate of 80%, thereby satisfying the water quality aspect of N.J.A.C. 7:8.

The proposed development is exempt from the groundwater recharge requirements set forth by N.J.A.C. 7:8 due to the fact that the project is located within and "urban redevelopment area" as it is a previously developed portion of the Metropolitan Planning Area as delineated on the State Plan Policy Map (SPPM).

VI. RUNOFF RATE REDUCTION PERFORMANCE

<u>Pre-development and Post Development Peak Runoff Results</u> <u>Summary for Total Site</u>

	EXISTING RUNOFF RATE (CFS)	REDUCTION REQUIREMENT	ALLOWABLE RUNOFF RATE (CFS)	PROPOSED RUNOFF RATE (CFS)
2 Year	2.156	50%	1.078	0.911
10 Year	4.151	25%	3.113	2.551
100 Year	8.602	20%	6.882	6.729

In order to meet the stormwater runoff quantity requirements, set forth by the Borough of North Plainfield and N.J.A.C. 7:8 for the proposed development, the site design incorporates a pervious pavement with two (2) underground R-Tank storage beds. The proposed pervious pavement system is designed to accept stormwater runoff from the proposed building roof, the proposed parking areas, loading areas and tributary yard areas. The stormwater runoff from these areas will be conveyed to the storage beds by the proposed stormwater conveyance system. Stormwater runoff from the proposed storage beds will be released at a controlled rate through an outlet control structure and is ultimately tributary to the existing drainage facilities located within US Route 22.

VII. PERVIOUS PAVEMENT SYSTEM DESIGN

As previously stated within this report, a pervious pavement system with underground storage that consists of 15" perforated HPDE pipe and two (2) underground R-Tank basins will be constructed to satisfy the stormwater quantity and quality regulations set forth by N.J.A.C 7:8, the New Jersey Soil Erosion and Sediment Control Standards and Borough of North Plainfield land use ordinance.

Stormwater runoff tributary to the pervious pavement will infiltrate through void space in the pavement to the stone storage section where the stormwater runoff will be detained. The bottom of the stone storage beds are located at least one foot above the seasonal high water table in each location. As noted in the hydrograph summary reports included within the appendix, the volume of the water quality design storm for the area tributary to pervious pavement system is equal to 4,119 CF. The pervious pavement system is designed to connect to a 15-inch perforated HDPE storm pipe with a proposed invert at elevation 114.80 FT, to discharge storms larger than the water quality storm and to provide at least 3 inches of stone underneath the underdrain as outlined in Chapter 9.5 of the New Jersey Stormwater Best Management Practices Manual. The 100-year stormwater runoff tributary to the pervious pavement systems with calculations for the stone section (0.40 void ratio) is located in the Hydrograph Summary Reports: Proposed Conditions section within the Appendix of this Report. Overflow of stormwater runoff from the paver system in the event of larger storms will be discharged through an outlet control structure which ultimate discharge to the proposed stormwater conveyance system located on site, which is ultimately tributary to the existing drainage facilities located within US Route 22.

In accordance with the New Jersey Stormwater Best Management Practices Manual, the following design considerations have been satisfied:

- Filter fabric is required along the sides and the bottom of the system to prevent migration of fines from the surrounding soil.
- The seasonal high water table (SHWT) or bedrock must be at least 1 foot below the bottom of the storage bed.
- The capacity of the underdrain must be sufficient to allow the system to drain within 72 hours.
- At least one inspection port, with a removable cap, must be provided in the storage bed with its location denoted in the maintenance plan. The inspection port must be placed at least 3 feet from any edge.

As previously stated within this report, the stormwater management design utilizes a pervious pavement system with underground storage that consists of 15" perforated HPDE pipe and two (2) underground R-Tank basins and a proposed underground conveyance pipe system to satisfy the stormwater quantity regulations set forth by N.J.A.C 7:8, the New Jersey Soil Erosion and Sediment Control Standards and Borough of North Plainfield land use ordinance.

The proposed storage beds have been designed to detain and discharge larger storms through an outlet control structure at a controlled rate to satisfy the stormwater quantity reduction requirements of N.J.A.C. 7:8.

Additionally, prior to entering the basins, stormwater runoff from the proposed motor vehicle surfaces will be routed to an 80% TSS removal rate Pervious Pavement System.

In accordance with the New Jersey Stormwater Best Management Practices Manual, the following design considerations have been satisfied:

- Bottom of Basin with underdrain must be a minimum of 1 foot above Seasonal High Water Table.
- Basin must fully drain basin volume within 72 hours.
- Basin bottom must be as level as possible.
- Basin must be designed to safely convey overflow volume.
- Basin may not be used where there is risk of basement flooding, etc.
- Contributary drainage area is 3:1 to the pervious pavement area

VIII. WATER QUALITY

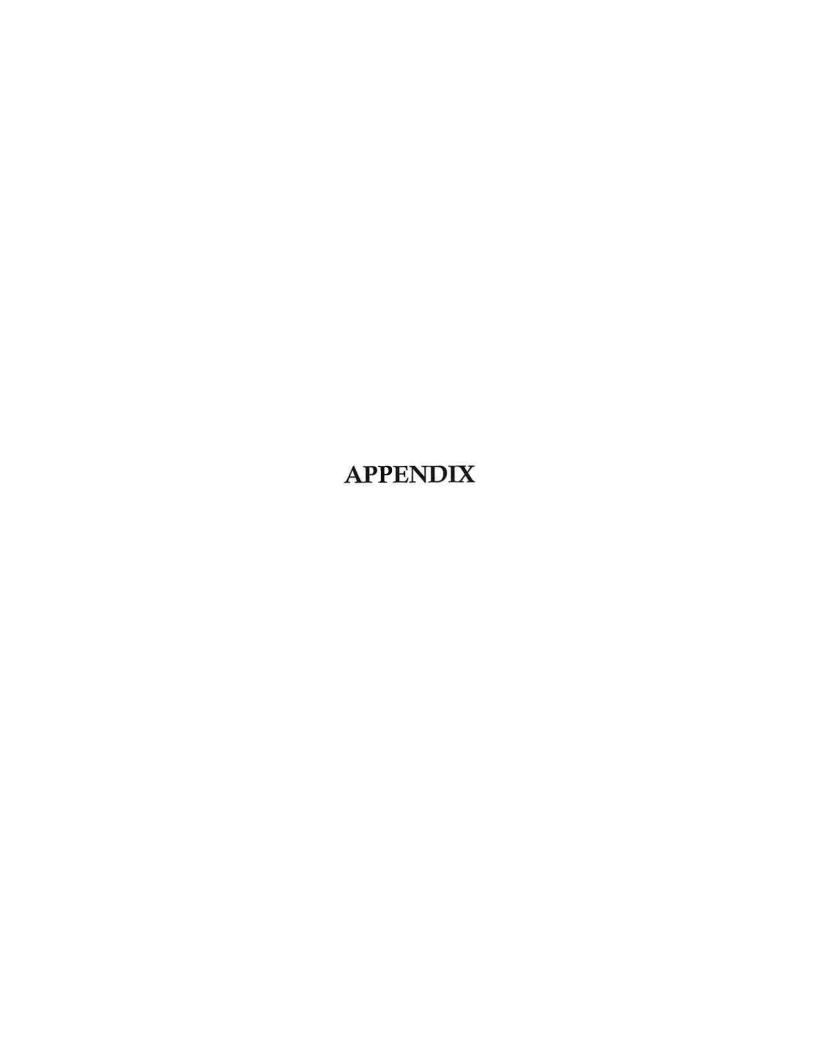
The TSS removal rate requirement set forth by the Borough of North Plainfield Land Use Ordinance and N.J.A.C. 7:8 is 80% for proposed motor vehicle surfaces. The stormwater management design for the project satisfies this requirement by utilizing a pervious pavement system certified by the NJDEP to provide a TSS removal rate of 80%. The entirety of the proposed motor vehicle surfaces is routed to these water quality measures. Therefore, the stormwater management facilities provide a TSS removal rate of greater than 80% for the subject project, thereby, satisfying the water quality aspect of the Borough of North Plainfield Land Use Ordinance and N.J.A.C. 7:8.

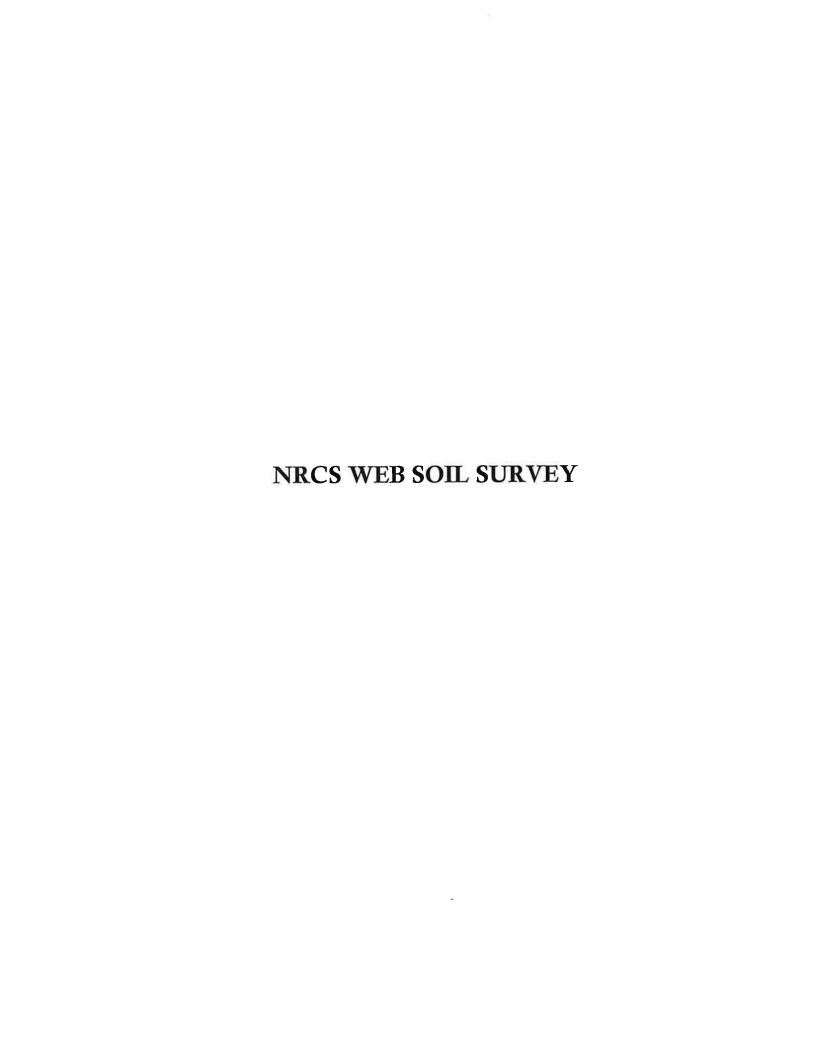
IX. GROUNDWATER RECHARGE

The proposed development is exempt from the groundwater recharge requirements set forth by N.J.A.C. 7:8 due to the fact that the project is located within and "urban redevelopment area" as it is a previously developed portion of the Metropolitan Planning Area as delineated on the State Plan Policy Map (SPPM).

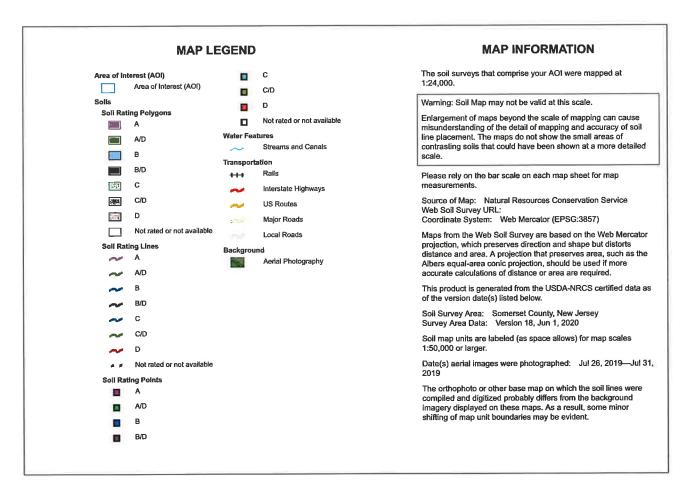
X. CONCLUSION

The proposed development has been designed with provisions for the safe and efficient control of stormwater runoff in a manner that will not adversely impact the existing drainage patterns, adjacent roadways, or adjacent parcels.


The site design has been prepared to implement green infrastructure techniques in accordance with N.J.A.C. 7:8 and the Borough of North Plainfield Stormwater Management Regulations.


The stormwater management design shall reduce peak flow rates for the proposed development area and meets the minimum peak flow reduction for the 2, 10 and 100-year storm frequencies as dictated by N.J.A.C. 7:8.


The proposed stormwater management design incorporates a pervious pavement system, capable of 80% total suspended solid (TSS) removal as stated within the New Jersey Stormwater Best Management Practices Manual thereby satisfying N.J.A.C. 7:8 Water Quality Standards.


The proposed development is exempt from the groundwater recharge requirements set forth by N.J.A.C. 7:8 due to the fact that the project is located within and "urban redevelopment area" as it is a previously developed portion of the Metropolitan Planning Area as delineated on the State Plan Policy Map (SPPM).

With this stated, it is evident that the proposed development will not have a negative impact on the existing stormwater management system, water quality or groundwater recharge on site or within the vicinity of the subject parcel.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AmdB	Amwell gravelly loam, 2 to 6 percent slopes	С	2.6	74.0%
DunC	Dunellen sandy loam, 8 to 15 percent slopes	A	0.9	26.0%
Totals for Area of Inter			3.5	100.0

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

RUNOFF CURVE NUMBER (CN) CALCULATIONS – EXISTING

EXISTING DRAINAGE AREA SUMMARY AND AVERAGE CURVE NUMBER(CN) CALCULATIONS

Proposed 4-Story Self Storage Facility 3041-99-010 Borough of North Plainfield Project: Job #: Location:

MDC Computed By: Checked By: Date:

Drainage /

8/30/2022

Lurve HSGA- HSGA- Curve HSGC- HSGC- Curve HSGC- Curve HSGC- Curve Total Total Area [CN] Used Area (acre) Area (acr	94,674.00 10	94,674.00
Total Area (acres)	2.17	2.17
Total PerviousAr ea (acres)	1.40	1.40
Avg. Perv. Curve Number	61	
Curve Number (CN) Used	70	
HSG C - Wooded Area (sf)		00'0
HSG C - Wooded Area (acre)	000	0.00
Curve Number (CN) Used	74	
HSG C - Open Space Area	37,524	37524.00
HSG C - Open Space Area	98'0	0.86
Curve Number (CN) Used	30	
HSG A - Wooded Area (sf)	3	0.00
HSG A - Wooded Area (acre)	0.00	0.00
0 ž <u>5</u>	38	
HSG A - HSG A - Open Open Open Space Area Space Area	23,505	23505.00
HSG A - HSG A - Open Open Space Area Space Area	0.54	0.54
Curve Number (CN) Used Sp	38	
Impervious Impervious Curve Area (acre) Area (sf) Number (CN) Used S	33.646	33645 00
Impervious Area (acre)	0.77	0.77
Area	Site	Total

ill gravelly loam, 2 to 6 percent slopes	Soil Amwe	O	HSG	AmdB	County Soil Survey -
	100	c	155	Canc	County Soil Survey -

			The state of the s	The state of the s
	Runoff Curve Number (CN)	Runoff Curve Number (CN)	Runoff Curve Number (CN)	Runoff Curve Number (CN)
Description	(HSG A)	(HSG B)	(HSG C)	(HSG D)
Impervious Surface	86	86	98	98
Open Space (lawn) (good)	39	61	74	08
(pood) (pood)	30	99	70	7.7

RUNOFF CURVE NUMBER (CN) CALCULATIONS – PROPOSED

PROPOSED DRAINAGE AREA SUMMARY AND AVERAGE CURVE NUMBER (CN) CALCULATIONS

Project: Job #: Location:

Proposed 4-Story Self Storage Facility 3041-99-010 Borough of North Plainfield

8/30/2022 MDC Computed By: Checked By: Date:

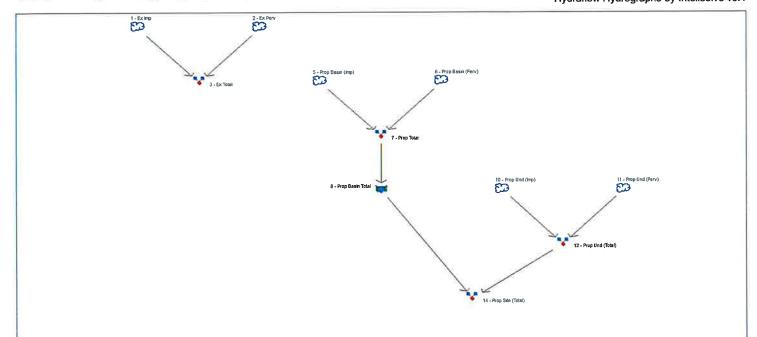
Total Area Total Area TC (Min.) (acres) (sf)	10	10	
Total Area (sf)	63,656.00	31,018.00	94,674.00
	1,46	14.0	2.17
urve HSGA- HSGA- Curve HSGC- HSGC- Curve HSGC- HSGC- Curve Total II. Wooded Wooded Wooded Number Open Number Wooded Wooded Number Curve PerviousAr Used Area (acre) Area (acre) Area (acre) Area (acre) (acre) Sh	0.29	0.48	0,77
Avg. Perv. Curve Number	48	58	
Curve Number (CN) Used	02	0.4	
HSG C - Wooded Area (sf)		2	00'0
HSG C - Wooded Area (acre)	00'0	00'0	00'0
Curve Number (CN) Used	74	74	
HSG C - Open Space Area (sf)	3.119	11.622	14741.00
HSG C - HSG C - Curve Open Open Number Space Area (CN) Used (facre) (sf)	0.07	0.27	0.34
Curve Number (CN) Used S	30	30	
HSG A - HSG A - Wooded Wooded Area (acre) Area (sf)	*		0.00
HSG A - Wooded Area (acre)	000	00.0	0.00
O골공	39	39	
HSG A - Open Space Area	9.583	9.278	18859.00
Curve HSG A- HSG A- Number Open Open (CN) Used Space Area Space Area (set)	0.22	0.21	0.43
Curve Number (CN) Used	88	86	
mpervious Impervious Curve Area (acre) Area (sf) Number (CN) Used	50.954	10.120	61074.00
Impervious Curve Area (acre) Area (st) (CN) Used	117	0.23	1.40
Drainage Area	Rasin	Indetained	Total

	County Soil Survey -	Dung	HSG A	Soli	Dunellen sandy loam, 8 to 15 percent slopes
--	----------------------	------	-------	------	---

	Runoff Curve Number (CN)			
Description	(HSG A)	(HSG B)	(HSG C)	(HSG D)
impervious Surface	86	86	98	88
Open Space (lawn) (good)	39	61	74	80
Woods foods	30	A.R.	02	- 11

HYDROGRAPH SUMMARY REPORTS – EXISTING AND PROPOSED CONDITIONS 2YR. 10 YR. & 100 YR.

Hydraflow Hydrographs by Intelisolve v9.1


Tuesday, Sep 20, 2022

Watershed Model Schematic	
Hydrograph Return Period Recap	
2 - Year	
Summary Report	. 3
Hydrograph Reports	. 4
Hydrograph No. 1, SCS Runoff, Ex Imp	. 4
Precipitation Report	. 5
Hydrograph No. 2, SCS Runoff, Ex Perv	6
Precipitation Report	. 7
Hydrograph No. 3, Combine, Ex Total	. 8
Hydrograph No. 5, SCS Runoff, Prop Basin (Imp)	
Precipitation Report	10
Hydrograph No. 6, SCS Runoff, Prop Basin (Perv)	11
Precipitation Report	12
Hydrograph No. 7, Combine, Prop Total	13
Hydrograph No. 8, Reservoir, Prop Basin Total	
Pond Report - Basin 2 (Rtank)	15
Hydrograph No. 10, SCS Runoff, Prop Und (Imp)	16
Precipitation Report	17
Hydrograph No. 11, SCS Runoff, Prop Und (Perv)	10
Hydrograph No. 11, 505 Rulloll, Plop Olid (Pelv)	10
Precipitation Report	20
Hydrograph No. 12, Combine, Prop Und (Total)	21
Hydrograph No. 14, Combine, Prop Site (Total)	21
40 W ==	
10 - Year	00
Summary Report	22
Hydrograph Reports	23
Hydrograph No. 1, SCS Runoff, Ex Imp	23
Precipitation Report	24
Hydrograph No. 2, SCS Runoff, Ex Perv	25
Precipitation Report	26
Hydrograph No. 3, Combine, Ex Total	27
Hydrograph No. 5, SCS Runoff, Prop Basin (Imp)	28
Precipitation Report	29
Hydrograph No. 6, SCS Runoff, Prop Basin (Perv)	30
Precipitation Report	31
Hydrograph No. 7, Combine, Prop Total	32
Hydrograph No. 8, Reservoir, Prop Basin Total	33
Hydrograph No. 10, SCS Runoff, Prop Und (Imp)	34
Precipitation Report	35
Hydrograph No. 11, SCS Runoff, Prop Und (Perv)	36
Precipitation Report	37
Hydrograph No. 12, Combine, Prop Und (Total)	38
Hydrograph No. 14, Combine, Prop Orid (Total)	30
nyurograph No. 14, Combine, Frop Site (Total)	JJ
400 Vaan	
100 - Year	40
Summary Report	40

Hydrograph Reports	41
Hydrograph No. 1, SCS Runoff, Ex Imp	41
Precipitation Report4	42
Hydrograph No. 2, SCS Runoff, Ex Perv4	43
Precipitation Report4	44
Hydrograph No. 3, Combine, Ex Total4	45
Hydrograph No. 5, SCS Runoff, Prop Basin (Imp)4	46
Precipitation Report	47
Hydrograph No. 6, SCS Runoff, Prop Basin (Perv)	48
Precipitation Report	49
Hydrograph No. 7, Combine, Prop Total	50
Hydrograph No. 8, Reservoir, Prop Basin Total	51
Hydrograph No. 10, SCS Runoff, Prop Und (Imp)	52
Precipitation Report	53
Hydrograph No. 11, SCS Runoff, Prop Und (Perv)	54
Precipitation Report	55
Hydrograph No. 12, Combine, Prop Und (Total)	56
Hydrograph No. 14, Combine, Prop Site (Total)	57
IDF Report	58

Hydraflow Hydrographs by Intelisolve v9.1

Watershed Model Schematic

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	Ex Imp
2	SCS Runoff	Ex Perv
3	Combine	Ex Total
5	SCS Runoff	Prop Basin (Imp)
6	SCS Runoff	Prop Basin (Perv)
7	Combine	Prop Total
8	Reservoir	Prop Basin Total
10	SCS Runoff	Prop Und (Imp)
11	SCS Runoff	Prop Und (Perv)
12	Combine	Prop Und (Total)
14	Combine	Prop Site (Total)

Project: 2.10.100.gpw

Tuesday, Sep 20, 2022

Hydrograph Return Period Recap

Hydraflow Hydrographs by Intellsolve v9.1

Hydrograph	noidhean	Eximp	Ex Perv	Ex Total	Prop Basin (Imp)	Prop Basin (Perv)	Prop Total	Prop Basin Total	Prop Und (Imp)	Prop Und (Perv)	Prop Und (Total)	Prop Site (Total)	Tuesday, Sep 20, 2022
	100-Yr	4.409	4.194	8.602	6.699	0.474	7.173	4.793	1.317	1.289	2.608	6.729	sday, S
	50-Yr	1	l	I	I	İ	I	I	1	ļ	1		Ž
	26-Yr	1	1	I	1	1		I	1				
ow (cfs)	10.Yr	2.881	1.471	4.151	4.073	0.080	4.140	1.830	0.801	0,408	1.209	2.551	
Peak Outflow (cfs)	ş. Y.	I	l	1	I			l	1	ON too		I	
-	3-4	1			27100	į	I	I				***	
	2-Yr	1.775	0.404	2,156	2,698	0.004	2,698	0.391	0.530	0.087	0.603	0.911	
	1-¥r	1		I	-	I	•	44		1		1	
wolful	Hyd(s)	Î	I	1,2	1	1	5, 6	4		1	10, 11	8, 12,	0.gpw
Hydrograph	type (origin)	SCS Runoff	SCS Runoff	Combine	SCS Runoff	SCS Runoff	Combine	Reservair	SCS Runoff	SCS Runoff	Combine	Combine	Proj. file: 2.10.100.gpw
Hyd.		-	2	60	ω.	9	7	۵	5	F	12	4	Pro

Hydrograph Summary Report

No.	Hydrograph type (origin)	Peak flow (cfs)	Time Interval (mfn)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph desoription
_	SCS Runoff	1.775	ιo	730	B,142	4	1	1	ExImp
N	SCS Runoff	0.404	ß	735	2,394	1	approximate the second	•	Ex Perv
6	Combine	2.156	2	730	10,535	1,2	1	1	Ex Total
2	SCS Runoff	2.698	Ŋ	730	12,371	Ī	I	I	Prop Basin (Imp)
9	SCS Runoff	0.004	Ŋ	785	113	ì	I	I	Prop Basin (Perv)
7	Combine	2.698	S	730	12,484	5, 6	I	I	Prop Total
60	Reservoir	0,391	vo.	780	12,398	7	113,78	5,406	Prop Basin Total
6	SCS Runoff	0.530	Ľ	730	2,432	I	1	-	Prop Und (Imp)
7	SCS Runoff	0.087	်	735	640	Ī	I	I	Prop Und (Perv)
12	Combine	0.603	w	730	3,072	10, 11	I	*****	Prop Und (Total)
4	Combine	0.911	VS:	730	15,470	B, 12,	1	•	Prop Sile (Total)

Tuesday, Sep 20, 2022

Return Period: 2 Year

2.10.100.gpw

Tuesday, Sep 20, 2022

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v8.1

Hyd. No. 1

Ex Imp

Hydrograph type Storm frequency Time interval Drainage area Basin Slope To method Total precip.

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

= SCS Runoff = 2 yrs = 5 min = 0.770 ac = 0.0 % = USER = 3.34 in = NOAA Atlas 14 Type-D.cds

Tuesday, Sep 20, 2022

Precipitation Report Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 1 Ex Imp = 1.775 cfs = 12.17 hrs = 8,142 cuft = 98 = 0 ft = 10.00 min = Custom = 484

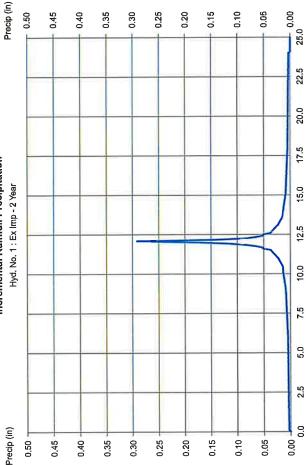
Storm Frequency Total precip. Storm duration

Time Interval Distribution

= 5 min = Custom

= 2 yrs = 3.3400 in = NOAA Atlas 14 Type-D.cds

Q (cfs)


Hyd. No. 1 -- 2 Year

Q (cfs) 2.00

Ex Imp

2.00

9.

1.00

Time (hrs)

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

Time (hrs)

0.00

26

54

52

20

8

9

4

12

10

ထ

N

0

000

—— Hyd No. 1

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Ex Perv

Hydrograph type Storm frequency Time interval Drainage area Basin Stope To method Total precip.

= SCS Runoff = 2 yrs = 5 min = 1.400 ac = 0.0 % = USER = 3.34 in = NOAAAttas 14 Type-D.cds

Tuesday, Sep 20, 2022

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

Tuesday, Sep 20, 2022

Hyd. No. 2

Storm Frequency Total precip. Storm duration

Time interval Distribution

Precip (In) 0.50 0.45

Incremental Rainfall Precipitation Hyd. No. 2 : Ex Perv - 2 Year

Precip (in)

Q (cfs)

Hyd. No. 2 -- 2 Year Ex Perv

> Q (cfs) 0.50

0.45

0.40

0.35

0.25

0.30

0.50

0.50

0.45

0.45

0.40

0.35

0.30 0.25 0.20

0.40

0.35

0.30

0.25

0.40 0.35 0.30 0.25 0.20

= 5 min = Custom

Ex Perv

= 0.404 cfs = 12.25 hrs = 2,394 cuft = 61 = 0 ft = 10.00 min = Custom = 484

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

= 2 yrs = 3.3400 in = NOAA Atlas 14 Type-D.cds

15.0 7.5 2.5

0.15

0.10 0.05 0.00 Time (hrs) 25.0

22,5

20.0

17.5

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

0.0

Time (hrs)

0.00

0.00

26

24

22

8

8

16

4

7

9

8

N

0.00

---- Hyd No. 2

0.05

0.05

0.10

0.10

0.15

0.15

0.15

0.20

0.10

0.05

0.20

Tuesday, Sep 20, 2022

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 3

Ex Total

Combine2 yrs5 min1, 2 Hydrograph type Storm frequency Time interval Inflow hyds.

Tuesday, Sep 20, 2022

Peak discharge = 2.156 cfs
Time to peak = 12.17 hrs
Hyd. volume = 10,535 cuft
Contrib. drain. area = 2.170 ac

Drainage area Basin Slope Tc method Total precip. Storm duration

= SCS Runoff = 2 yrs = 5 min = 1.170 ac = 0.0 % = USER = 3.34 in = NOAAAtlas 14 Type-D.cds

= 2.698 cfs = 12.17 hrs = 12,371 cuft = 98 = 0 ft = 10.00 min = Custom Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc) =
Distribution
Shape factor

œ

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1 Hyd. No. 5

Prop Basin (Imp)

Hydrograph type Storm frequency Time interval

Prop Basin (Imp) Hyd. No. 5 -- 2 Year

> Q (cfs) 3.00

Q (cfs)

Hyd. No. 3 -- 2 Year Ex Total

> Q (cfs) 3.00

3.00

Q (cfs) 3.00

2.00

2.00

5.00

2.00

1.00

1.00

1.00

1.00

10 8

Time (hrs)

000

26

24

22

20

48

16

4

4

—— Hyd No. 5

0.00

0.00

26

24

22

8

18

4

5

9

—— Hyd No. 2 16

--- Hyd No. 1

—— Hyd No. 3

0

000

Time (hrs)

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

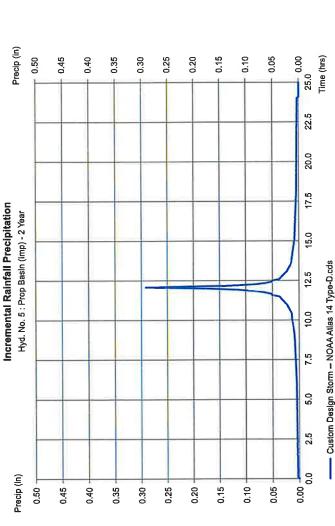
Hyd. No. 5

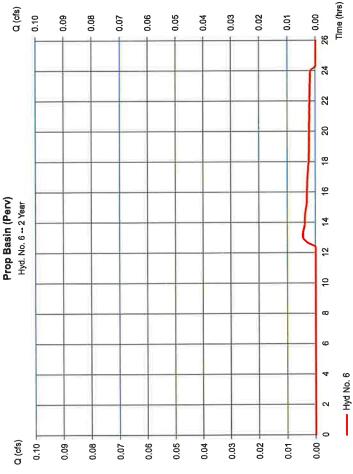
Prop Basin (Imp)

Storm Frequency Total precip. Storm duration

= 2 yrs = 3.3400 in = NOAA Atlas 14 Type-D.cds

Time Interval Distribution


= 5 min = Custom


Hydrograph Report

9

Tuesday, Sep 20, 2022

Tuesday, Sep 20, 2022 = 0.004 cfs = 13.08 hrs = 113 cuft = 48 = 0 ft = 10.00 min = Custom = 484 Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of cono. (To) =
Distribution
Shape factor = SCS Runoff = 2 yrs = 5 min = 0.290 ac = 0.0 % = USER = 3.34 in = NOAA Atlas 14 Type-D.cds Hydraflow Hydrographs by Intelisolve v9.1 Hydrograph type Storm frequency Time interval Prop Basin (Perv) Drainage area Basin Slope Tc method Total precip. Storm duration Hyd. No. 6

Tuesday, Sep 20, 2022

Precipitation Report

Hydraflow Hydrographs by Intelisative v9.1

Hyd. No. 6

Prop Basin (Perv)

= 2 yrs = 3.3400 in = NOAA Atlas 14 Type-D.cds Storm Frequency Total precip. Storm duration

= 5 min = Custom Time Interval Distribution

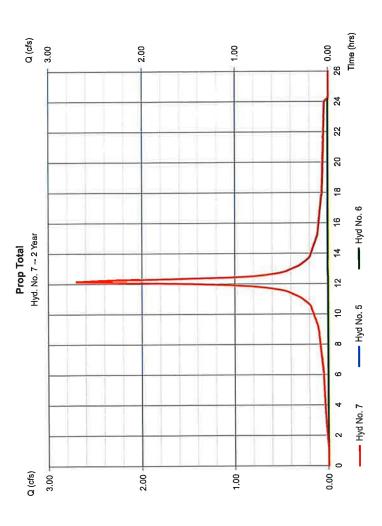
42

Hydrograph Report

Hyd. No. 7

Hydraflow Hydrographs by Intellsolve v9.1

Tuesday, Sep 20, 2022


Prop Total

Hydrograph type Storm frequency Time interval Inflow hyds.

= Combine = 2 yrs = 5 min = 5, 6

Peak discharge = 2.698 cfs
Time to peak = 12.17 hrs
Hyd. volume = 12,484 cuft
Contrib. drain. area = 1.460 ac

Precip (in) 25.0 0.50 0.10 Time (hrs) 0.45 0.25 0.15 0.40 0.35 0.30 0.20 0.05 22.5 20.0 17.5 Incremental Rainfall Precipitation Hyd. No. 6 : Prop Basin (Perv) - 2 Year 15.0 ---- Custom Design Storm - NOAA Atlas 14 Type-D.cds 12.5 10.0 7.5 S O 2.5 0.0 Precip (in) 0.50 00'0 0.25 0.05 0,40 0.15 0.20 0.10 0,45 0.35 0,30

5

Hydrograph Report

	Intellsolve v9.1
--	------------------

Prop Basin Total

	100		- 000 C
Hydrograph type	= Reservoir	Peak discharge	= 0.391 CIS
m frequency	= 2 Vrs	Time to peak	= 13,00 hrs
e interval	= 5 min	Hyd. volume	= 12,398 cuft
Inflow hyd. No.	= 7 - Prop Total	Max. Elevation	= 113.76 ft
Reservoir name	= Basin 2 (Rtank)	Max. Storage	5,406 cuft

Storage Indication method used.

Pond Report

4

Tuesday, Sep 20, 2022 Hydraflow Hydrographs by Intelisolve v9.1 Pond No. 2 - Basin 2 (Rtank) Pond Data Pond storage is based on user-defined values.

Contour area (sqft) Incr.	Incr. Storage (cuft) Total etorage (cuft)	727													941 10,242					Weir Structures	[A] [B] [C] [D]	Crest Len (ft) = 2,00 0.00 0.00 0.00	.5 0.00	. = 3,33 3,33 3,33	Weir Type = Rect	Multi-Stage = Yes No No No			Exfl.(In/hr) = 0.000 (by Wet area)	
itures (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		n/a	110	B/U	P/1	n/a	n/a	n/a	n/a	n/a	Wei		0.00	0.00	0	0.00	0.00			09'0										
	(JJ)	112.00	112,23	112.50	67.21	113.00	113.25	113.50	113.75	114.00	114.25	114.50	114.75	115.00	115.25	115.50	115.75	116.00	116.05	Culvert / Orlfice Structures	<u>8</u>	3.50	3.50	-			0.00	.013	09'0	

Stage S (t c) 0.00 0.25 0.50 0.75	Storage	,	Control of the contro										
0.00 0.25 0.50 0.75		Elevation ft	Clv A cfs	CIv B	Cl√ C cfs	PrfRar cfs	Wr A cfs	Wr B	Wr C	Wr D	cfs cfs	User	Total cfs
0.25 0.50 0.75	0	112.00	0.00	0.00	00'0	ı	00:0	i	i	ı	ŀ	ı	00'0
0.50	767	112.25	0.10 lc	0.10 lc	0.00	1	0.00	1	1	1	ι	ı	0.10
0.75	1.535	112.50	0.18 ic	0.18 lc	0.00	ļ	0.00	ì	i	ı	ļ]	0.18
100	2.303	112.75	0.24 lc	0,23 lc	0.00	!	0.00	ı	1	1	ļ	I	0.23
	3.072	113.00	0.29 lc	0.28 lc	0.00	ŀ	0.00	ı	1	1		i	0.28
1.25	3.840	113.25	0.33 ic	0.32 lc	0.00	1	00'0	Į	I	1	l	i	0.32
1.50	4.608	113.50	0.37 ic	0,36 lc	0.00	ı	00'0	ı	i	ı	ļ	ı	0.36
1.75	5.377	113.75	0,39 Ic	0.39 lc	0.00	ı	0.00	i	ļ	1	i	1	0.39
2.00	6.145	114.00	0.83	0.40 lc	0.41 10	1	0.00	;	l	ŧ	ι	1	0.81
2.25	6.913	114.25	1.72 oc	0.40 lc	1.32 lc	!	0.00	ŀ	ł	!	l	ļ	1.72
2.50	7.681	114.50	2,30 oc	0.41 lc	1.88 lc	Į	0.00	1	1	ı	ı	1	2.29
2.75	8.450	114.75	2.73 00	0.43 ic	2.30 lc	i	0.00	ı	1	į	ţ	i	2.73
3.00	9.301	115.00	3.90 00	0.40 c	2.66 lc	1	0.83	ļ	I	ı	Į	ı	3.80
3.25	10.242	115,25	5.71 00	0,37 lc	2.98 lc	i	2.35	ļ	!	i	į	í	5.71
3.50	11.209	115.50	7.35 00	0.33 lc	2.70 10	1	4.33	1	ŀ	I	i	ı	7.35
3.75	11.398	115,75	8.68 00	0.27 ic	2,22 lo	1	6.19 s	i	1	ı	ı	!	8.68
4.00	11,530	116.00	9,53 00	0.23 lc	1.92 la	!	7.39 €	į	i	1	ŧ	!	9.53
4.05	11.547	116,05	9.68 00	0.22 lc	1.87 lc	Į	7.59 s	ı	i	ı	ı	Į.	9.68

Q (cfs)	5.00	1.00	35 Time (frrs)
			30 5,406 cuft
			20 25 30 Total storage used = 5,406 cuff
Prop Basin Total Hyd. No. 8 2 Year			20 Total
Prop Ba			15 1No. 7
			10 Hyd No. 7
			S S Pyd No. 8
Q (cfs)	2,000	1.00	0000

4

Tuesday, Sep 20, 2022

Hydrograph Report

Hydraffow Hydrographs by Intellactve v9.1

Hyd. No. 10

Prop Und (Imp)

= SCS Runoff = 2 yrs = 5 mln = 0.230 ac = 0.0 % = USER = 3.34 in = NOAA Atlas 14 Type-D.cds Hydrograph type Storm frequency Time Interval Drainage area Basin Slope Tc method Total precip.

16

Tuesday, Sep 20, 2022

Precipitation Report Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 10

Prop Und (Imp)

Storm Frequency Total precip. Storm duration

= 2 yrs = 3.3400 in = NOAA Atlas 14 Type-D.cds

= 0.530 cfs = 12.17 hrs = 2,432 cuft = 98 = 0 ft = 10.00 min = Custom = 484

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

= 5 min = Custom Time interval Distribution

Incremental Rainfall Precipitation

Q (cfs)

Hyd. No. 10 - 2 Year Prop Und (Imp)

> Q (cfs) 1.00

0.90

0.80

0.70

0.60

0.50

9.

0.90

0.80

0.70

0.60

0.50

0.40

0.30

Precip (in)

0.50 0.45 0.40 0.35

Time (hrs)

0.00

25.0

22.5

20.0

17.5

15.0

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

0.0

Time (hrs)

00'0

56

24

22

20

9

16

4

5

우

ဖွ

0

0.0

0.10

0.20

0.40

0.30

—— Hyd No. 10

0.10

0.20

0.05

0,15 0.10

0,25 0.20

0.30

Precipitation Report Hydraflow Hydrographs by Intelisolve v9.1

49

Tuesday, Sep 20, 2022

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v8.1

Hyd. No. 11

Prop Und (Perv)

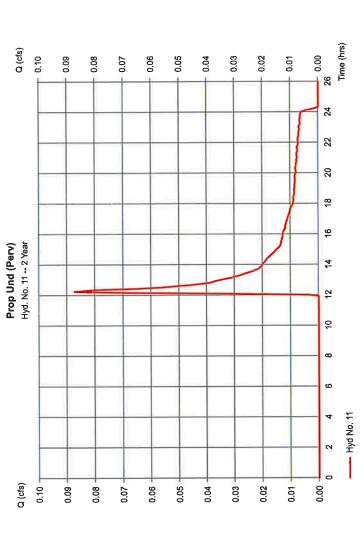
Hydrograph type Storm frequency Time interval Drainage area Basin Slope To method Total precip.

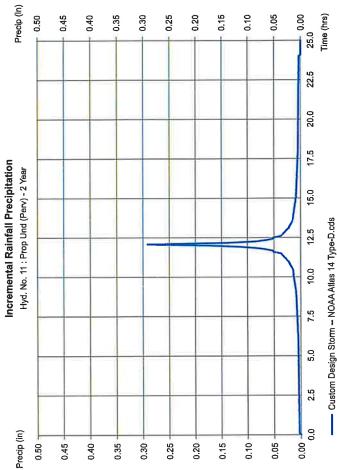
= SCS Runoff = 2 yrs = 5 min = 0.480 ac = 0.0 % = USER = 3.34 in = NOAA Atlas 14 Type-D.cds

Tuesday, Sep 20, 2022

Prop Und (Perv) Hyd. No. 11

= 0.087 cfs = 12.25 hrs = 640 cuft = 58 = 0 ft = 10.00 min = Custom = 484


Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor


Storm Frequency Total precip. Storm duration

= 5 min = Custom

Time Interval Distribution

= 2 yrs = 3.3400 in = NOAA Atlas 14 Type-D.cds

Tuesday, Sep 20, 2022

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Prop Und (Total)

= Combine = 2 yrs = 5 min = 10, 11 Hydrograph type Storm frequency Time interval Inflow hyds.

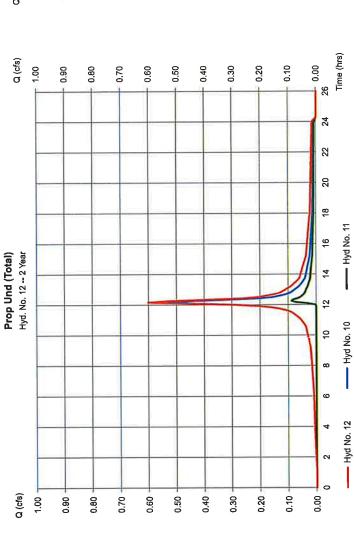
Peak discharge = 0.603 cfs
Time to peak = 12.17 hrs
Hyd. volume = 3,072 cuft
Contrib. drain. area = 0.710 ac

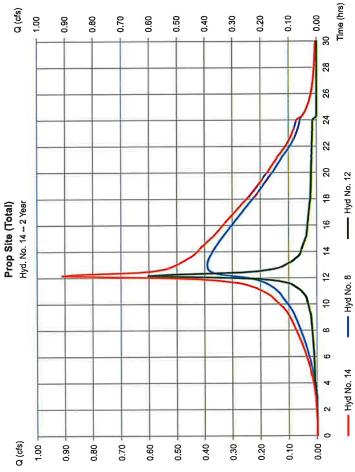
Hydrograph Report

20

Tuesday, Sep 20, 2022

Hydraflow Hydrographs by Intellsolve v9.1

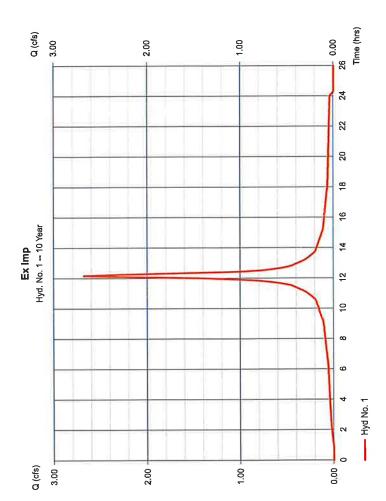

Hyd. No. 14


Prop Site (Total)

Hydrograph type Storm frequency Time interval Inflow hyds.

= Combine = 2 yrs = 5 min = 8, 12

Peak discharge = 0.911 ofs
Time to peak = 12.17 hrs
Hyd. volume = 15,470 cuft
Contrilb. drain. area = 0.000 ac


Hydrograph Summary Report

lelisolve v9.1													
Hydreflow Hydrographs by Intelisolve v9.1	Hydrograph description	Ex Ιmp	Ex Perv	Ex Total	Prop Basin (Imp)	Prop Basin (Perv)	Prop Total	Prop Basin Total	Prop Und (Imp)	Prop Und (Perv)	Prop Und (Total)	Prop Site (Total)	
	Total strge used (cuft)	Î		l	ı	-		7,043	1	I	ļ	ı	
	Maximum elevation (ft)	ı	1	ı	I	I	1	114.30	1	1	I	ı	
	Inflow hyd(s)	ı	I	1,2	1	I	5, 8	7	1	i	10, 11	8, 12,	
eport	Hyd. volume (cuft)	12,508	6,551	19,059	19,005	583	19,588	19,502	3,736	1,918	5,654	25,156	
ary R	Time to peak (min)	730	730	730	730	735	730	745	730	730	730	740	
E E	Time interval (min)	9	G	40	က	ທ	ß	ıo	40	ç	ND.	Ф	
n Su	Peak flow (cfs)	2.681	1.471	4.161	4.073	0,080	4.140	1.830	0.801	0.408	1,209	2.661	
Hydrograph Summary Report	Hydrograph type (origin)	SCS Runoff	SCS Runoff	Combine	SCS Runoff	SCS Runoff	Combine	Reservoir	SCS Runoff	SCS Runoff	Combine	Combine	
<u>ک</u>	P o	-	2	6	2	- 9		60	5	E	51	4	

Hydrograph Report

22

Hydraflow Hydrographs by Intellsolve v8.1	Intellsalve v9.1		Tuesday, Sep 20, 2022
Hyd. No. 1			
Ex Imp			
Hydrograph type	= SCS Runoff	Peak discharge	= 2.681 cfs
Storm frequency	= 10 yrs	Time to peak	= 12.17 hrs
Time interval	= 5 min	Hyd. volume	12,508 cuft
Drainage area	= 0.770 ac	Curve number	= 98
Basin Slope	= 0.0 =	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10,00 mln
Total precip.	= 5.01 in	Distribution	= Custom
Storm duration	NOAA Atlas 14 Type-D.cds	Shape factor	= 484

Tuesday, Sep 20, 2022

Return Period: 10 Year

2.10.100.gpw

Precipitation Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 1

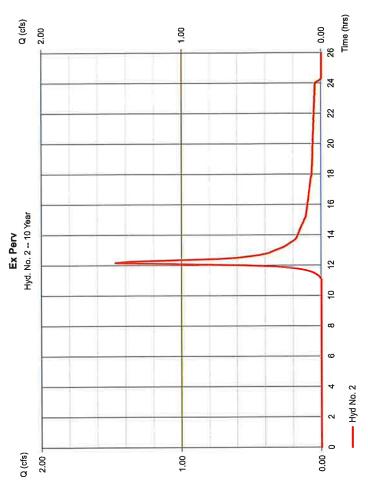
Ex Imp

Storm Frequency Total precip. Storm duration

= 10 yrs = 5.0100 in = NOAA Atlas 14 Type-D.cds

24

Tuesday, Sep 20, 2022


= 5 min = Custom Tlme interval Distribution

Precip (in) 0.00 0.10 0.45 0.40 0.35 0.25 0.20 0.15 0.05 0.50 0.30 Time (hrs) 22.5 20.0 17.5 Incremental Rainfall Precipitation Hyd. No. 1: Ex Imp - 10 Year 15.0 10.0 5.0 2.5 0.00 Precip (In) 0.50 0,45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05

---- Custom Design Storm ~ NOAA Atlas 14 Type-D.cds

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1	Intelisolve v9.1		Tuesday, Sep 20, 2022
Hyd. No. 2			
Ex Perv			
Hvdrograph type	= SCS Runoff	Peak discharge	= 1.471 cfs
Storm frequency	= 10 vrs	Time to peak	II
Time interval	= 5 min	Hyd. volume	= 6,551 cuft
Drainage area	= 1,400 ac	Curve number	11
Basin Slope	% O:0 =	Hydraulic length	= 0 ft
Tc method	= USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.01 in	Distribution	Custom
Storm duration	NOAA Atlas 14 Type-D.cds	Shape factor	= 484

Precipitation Report

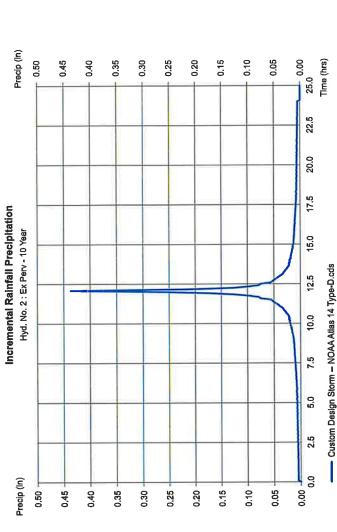
Hydraflow Hydrographs by Intellective v9.1

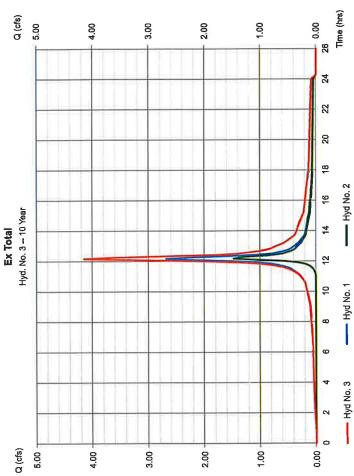
Tuesday, Sep 20, 2022

26

Hyd. No. 2

Ex Perv


Storm Frequency Total precip. Storm duration


= 10 yrs = 5.0100 in = NOAA Atlas 14 Type-D.cds

= 5 min = Custom Time interval Distribution

Hydrograph Report

Tuesday, Sep 20, 2022 Peak discharge = 4.151 cfs
Time to peak = 12.17 hrs
Hyd. volume = 19,059 cuft
Contrib. drain. area = 2.170 ac = Combine = 10 yrs = 5 min = 1, 2 Hydraflow Hydrographs by Intellsolve v9.1 Hydrograph type Storm frequency Time interval Inflow hyds. Hyd. No. 3 Ex Total

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 5

Prop Basin (Imp)

= SCS Runoff = 10 yrs = 5 mln = 1.170 ac = 0.0 % = USER = 5.01 in = NOAAAtlas 14 Type-D.cds Hydrograph type Storm frequency Time Interval Drainage area Basin Slope To method Total precip. Storm duration

28

Tuesday, Sep 20, 2022

= 4.073 cfs = 12.17 hrs = 19,005 cuft = 98 = 0 ft = 10.00 min = Custom

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

= 5 min = Custom

Hydraflow Hydrographs by Intellsolve v9.1

Precipitation Report

Hyd. No. 5

Prop Basin (Imp)

Storm Frequency Total precip. Storm duration

= 10 yrs = 5.0100 in = NOAA Atlas 14 Type-D.cds

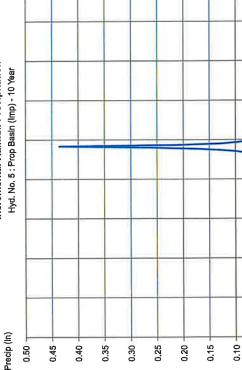
Tlme Interval Distribution

Q (cfs)

Prop Basin (Imp) Hyd. No. 5 -- 10 Year

Q (cfs) 9.00

5.00


4.00

Incremental Rainfall Precipitation Hyd. No. 5 : Prop Basin (Imp) - 10 Year

Precip (In)

0.50

0.45 0.40 0.35

3.00

3.00

4.00

2.00

0.30 0.25 0.20 0.15

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

2.5

0.0

Time (hrs)

0.00

26

24

22

20

甲

9

4

₹ N

9

—— Hyd No. 5

0

0.0

1.00

2.00

0.05 0.00

8.

25.0

22.5

20.0

15.0

Time (hrs)

0.10

0.05

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 6

Prop Basin (Perv)

= SCS Runoff = 10 yrs = 5 min = 0.290 ac = 0.0 % = USER = 5.01 in = NOAAAtlas 14 Type-D.cds

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Total precip. Storm duration Storm duration

30

Tuesday, Sep 20, 2022

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 6

Prop Basin (Perv)

Storm Frequency Total precip. Storm duration

= 0.080 cfs = 12.25 hrs = 583 cuft = 48 = 0 ft = 10.00 min = Custom = 484

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Time Interval Distribution

= 5 min = Custom = 10 yrs = 5.0100 in = NOAA Atlas 14 Type-D.cds

Q (cfs) 0.10 Prop Basin (Perv) Hyd. No. 6 -- 10 Year Q (cfs) 0.10

0.09

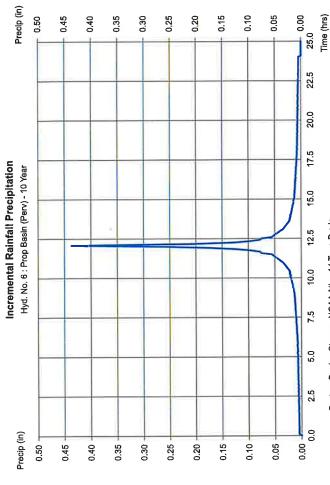
0.08

0.08

0.07

0.09

90.0


0.05

0.07

90.0

0.05

0.04

---- Custom Design Storn - NOAA Atlas 14 Type-D.cds

Time (hrs)

0.00

26

24

22

20

48

16

4

2

9

00

N

0.00

0.0

0.02

0.03

0.0

—— Hyd No. 6

0.02

0.01

0.03

Hydrograph Report

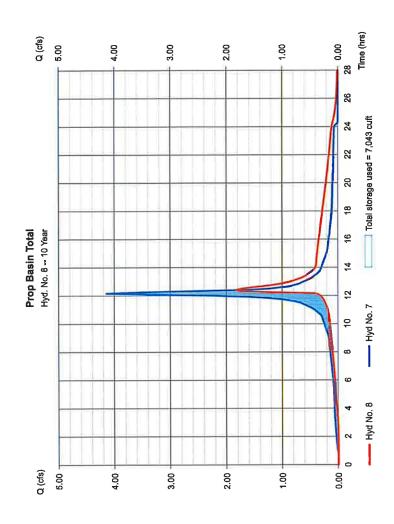
Hydraflow Hydrographs by Intellsolve vB.1

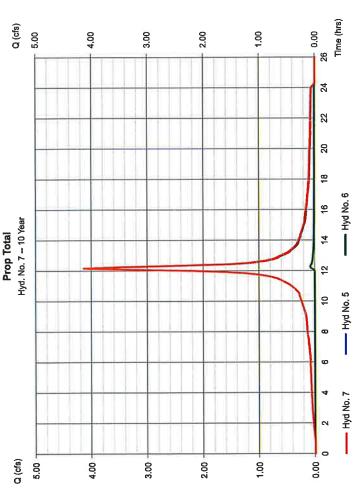
Hyd. No. 7

Prop Total

= Combine = 10 yrs = 5 min = 5, 6 Hydrograph type Storm frequency Time interval Inflow hyds.

Peak discharge = 4.140 cfs
Time to peak = 12.17 hrs
Hyd. volume = 19,588 cuft
Contrib. drain. area = 1.460 ac


Hydrograph Report


Tuesday, Sep 20, 2022

32

Tuesday, Sep 20, 2022 = 1.830 cfs = 12.42 hrs = 19,502 cuft = 114.30 ft = 7,043 cuft Peak discharge Time to peak Hyd, volume Max. Elevation Max. Storage Reservoir
10 yrs
5 min
7 - Prop Total
Basin 2 (Rtank) Hydraflow Hydrographs by Intellactive v9.1 Hydrograph type Storm frequency Time interval Inflow hyd. No. Prop Basin Total Reservoir name Hyd. No. 8

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 10

Prop Und (Imp)

= SCS Runoff = 10 yrs = 5 min = 0.230 ac = 0.0 % = USER = 5.01 in = NOAA Atlas 14 Type-D.cds

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration

= 0.801 cfs = 12.17 hrs = 3,736 cuft = 98 = 0 ft = 10.00 min = Custom = 484

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

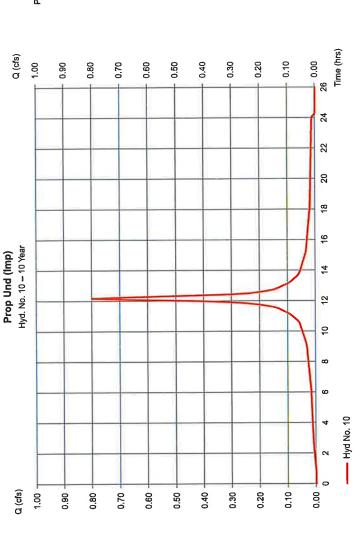
Precipitation Report

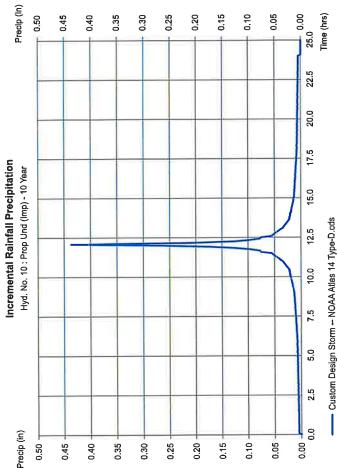
34

Tuesday, Sep 20, 2022

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10


Prop Und (Imp)


Storm Frequency Total precip. Storm duration

= 10 yrs = 5.0100 in = NOAA Atlas 14 Type-D.cds

Time interval Distribution

= 5 min = Custom

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 11

Prop Und (Perv)

= SCS Runoff = 10 yrs = 5 mln = 0.480 ac = 0.0 % = USER = 5.01 in = NOAA Atlas 14 Type-D.cds

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip. Storm duration

Tuesday, Sep 20, 2022

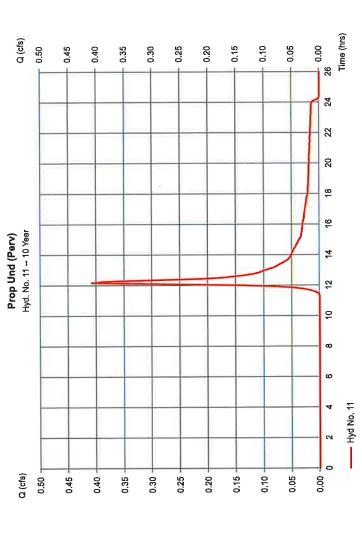
= 0.408 cfs = 12.17 hrs = 1,918 cuft = 58 = 0 ft = 10.00 min = Custom = 484

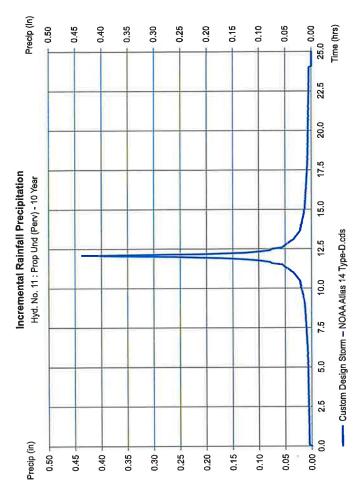
Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

36

Precipitation Report

Hydraflow Hydrographs by Intelisolve v9.1


Hyd. No. 11


Prop Und (Perv)

Storm Frequency Total precip. Storm duration

Time interval Distribution

= 5 min = Custom = 10 yrs = 5.0100 in = NOAAAtlas 14 Type-D.cds

Hydrograph Report

Hydraflow Hydrographs by Intellacive v9.1

Hyd. No. 12

Prop Und (Total)

= Combine = 10 yrs = 5 min = 10, 11 Hydrograph type Storm frequency Time interval Inflow hyds.

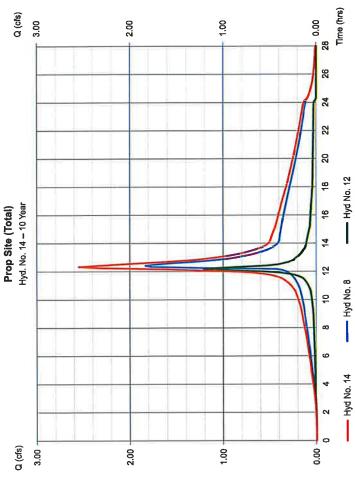
Peak discharge = 1.209 cfs
Time to peak = 12.17 hrs
Hyd. volume = 5,654 cuft
Contrib. drain. area = 0.710 ac

Hydrograph type Storm frequency Time interval Inflow hyds.

Hydrograph Report

Hydraflow Hydrographa by Intellsolve v9.1 Hyd. No. 14

Tuesday, Sep 20, 2022


38

Prop Site (Total)

Combine10 yrs5 min8, 12

Peak discharge = 2.551 cfs
Time to peak = 12.33 hrs
Hyd. volume = 25,156 cuft
Contrib. drain. area = 0.000 ac

Q (cfs) 3.00 Q (cfs) 2.00 Hyd. No. 12 -- 10 Year Prop Und (Total) Q (cfs) 2.00

1.00

1.00

Time (hrs)

0.00

26

24

22

20

8

4

72

9

θ

N

0

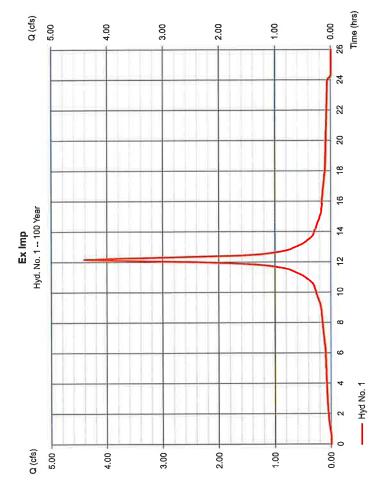
0.00

---- Hyd No. 11 16

---- Hyd No. 10

—— Hyd No. 12

Hydrograph Summary Report


Hyd. Hydrograph type Peak flow their (min) Time (min) Hyd. Hyd. Inflow alevation flow (cuft) Maximum type alevation flow (min) Time (cuft) Hydrograph (cuft) Hydrograph (cuft) Hydrograph (cuft)	2	Hydrograph Summary Keport	on of		ary R	epor				Hydraflow Hydrographs by Intelisolve v9.1
	No.	Hydrograph type (origin)	Peak flow (cfs)	Time Interval (mln)		Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description

Hydrograph type (origin)	£ ~	Peak flow (cfs)	Time Interval (mln)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
SCS Runoff	₹	4.409	s	730	20,885	I	-	-	Ех Ітр
SCS Runoff	#	4,194	6	730	17,178	ı	1	I	Ex Perv
Combine		8,802	ď	730	38,063	1,2	l	ĺ	Ex Total
SCS Runoff	=	6,689	9	730	31,734	î	ı	ı	Prop Basin (Imp)
SCS Runoff	*	0.474	ß	730	2,136	i	I	I	Prop Basin (Perv)
Combine		7.173	2	730	33,870	5, 8	I	Ĭ	Prop Total
Reservolr		4,793	g	740	33,784	~	115.15	9,793	Prop Basin Total
SCS Runoff	+	1,317	ď	730	6,238	I	ı	1	Prop Und (Imp)
SCS Runoff	Ju di	1.289	ъ	730	5,333	1	1	I	Prop Und (Perv)
Combine		2.608	w	730	11,572	10, 11	į	1	Prop Und (Total)
Cambine		6.729	6	736	45,355	8, 12,	I	<u> </u>	Prop Site (Total)
2.10.100.gpw	≥				Return F	Return Period: 100 Year) Year	Tuesday, S	Tuesday, Sep 20, 2022
1	1								

Hydrograph Report

40

Hydraflow Hydrographs by Intelisolve v9.1	Intelisaive v9.1		l uesday, Sep zu, zuzz
Hyd. No. 1			
Ex Imp			
Hvdrograph type	= SCS Runoff	Peak discharge	= 4.409 cfs
Storm frequency	= 100 yrs	Time to peak	= 12.17 hrs
Time interval	n 5 min	Hyd. volume	= 20,885 cuft
Drainage area	= 0.770 ac	Curve number	= 88
Basin Slope	% 0.0 =	Hydraulic length	= 0 ft
Tc method	- USER	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.21 in	Distribution	= Custom
Storm duration	= NOAA Atlas 14 Type-D.cds	Shape factor	= 484

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 1

Ex Imp

Storm Frequency Total precip. Storm duration

= 100 yrs = 8.2100 in = NOAA Atlas 14 Type-D.cds

Tuesday, Sep 20, 2022

= 5 min = Custom Time interval Distribution

42

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 2

Ex Perv

Hydrograph type Storm frequency Time interval

Drainage area Basin Slope Tc method Total precip. Storm duration

= SCS Runoff = 100 yrs = 5 min = 1,400 ac = 0.0 % = USER = 8.21 in = NOAA Atlas 14 Type-D.cds

= 4.194 cfs = 12.17 hrs = 17,178 cuft = 61 = 0 ft = 10.00 min = Custom Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Ex Perv

1.00 0.30 0.80

1.00

0.80 0.70

0.90

09'0 0.50 0.40 0.30 0.20

Q (cfs)

5.00

4.00

3.00

Hyd. No. 2 -- 100 Year Q (cfs) 5.00 4.00 3.00 2.00 1.00 0.00

2.00

Time (hrs)

00'0

56

24

22

8

48

16

4

N

9

9

0

0.00

---- Custom Design Storm - NOAA Allas 14 Type-D.cds

0.10

0.10

0.20

0.30

---- Hyd No. 2

9.

Precip (in) Time (hrs) 25.0 22.5 20.0 17.5 Incremental Rainfall Precipitation Hyd. No. 1 : Ex Imp - 100 Year 15.0 12.5 10.0 7.5 5.0 2.5 0.0 Precip (in) 00'0

0.50 0.40

0.70 0.60

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

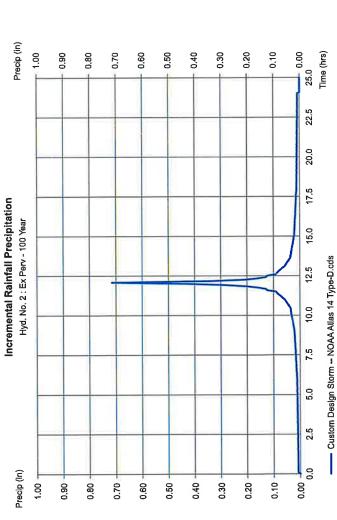
Hyd. No. 2

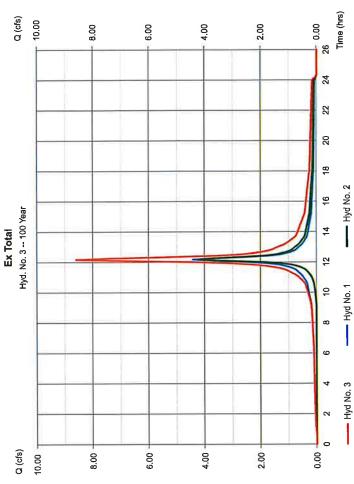
Ex Perv

Storm Frequency Total precip. Storm duration

= 100 yrs = 8.2100 in = NOAA Atlas 14 Type-D.cds

Tuesday, Sep 20, 2022


44


= 5 min = Custom

Time Interval Distribution

Hydrograph Report

Tuesday, Sep 20, 2022 Peak discharge = 8.602 cfs
Time to peak = 12.17 hrs
Hyd. volume = 38,063 cuft
Contrib. drain. area = 2.170 ac = Combine = 100 yrs = 5 min = 1, 2 Hydraflow Hydrographs by Intelisolve v9.1 Hydrograph type Storm frequency Time interval Inflow hyds. Hyd. No. 3 Ex Total

Precipitation Report Hydraflow Hydrographs by Intellsolve v9.1

Tuesday, Sep 20, 2022

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 5

Prop Basin (Imp)

Hydrograph type Storm frequency Time interval Drainage area Basin Slope To method Total precip. Storm duration

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

= SCS Runoff = 100 yrs = 5 min = 1.170 ac = 0.0 % = USER = 8.21 in = NOAA Atlas 14 Type-D.cds

46

Tuesday, Sep 20, 2022

= 6.699 cfs = 12.17 hrs = 31,734 cuft = 98 = 0 ft = 10.00 min = Custom = 484

Storm Frequency Total precip. Storm duration

Prop Basin (Imp) Hyd. No. 5

= 5 min = Custom

Time interval Distribution

= 100 yrs = 8.2100 in = NOAA Atlas 14 Type-D.cds

Incremental Rainfall Precipitation

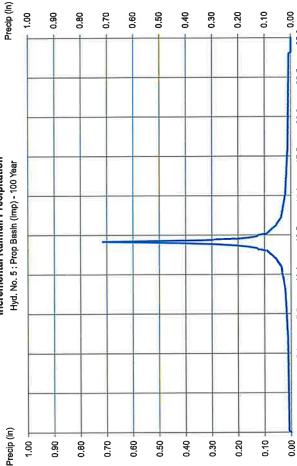
Q (cfs)

Prop Basin (Imp) Hyd. No. 5 -- 100 Year

Q (cfs) 7.00

6.00

5.00


7.00

6.00

5.00

1.0

0.90 0.80 0.70

0.60 0.50 0.40 0.30 0.20 0.10 0.00

25,0

22.5

20.0

17.5

15.0

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

2,5

0.0

Time (hrs)

0.00

26

24

22

8

49

16

4

2

은

æ

0.0

9.

—— Hyd No. 5

2.00

3.00

3.00

4.00

2.00

4.00

1.00

Time (hrs)

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 6

Prop Basin (Perv)

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.

= SCS Runoff = 100 yrs = 5 min = 0.290 ac = 0.0 % = USER = 8.21 in = NOAA Atlas 14 Type-D.cds

84

Tuesday, Sep 20, 2022

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1 Hyd. No. 6

Prop Basin (Perv)

Storm Frequency Total precip. Storm duration

= 100 yrs = 8.2100 in = NOAA Atlas 14 Type-D.cds

= 0.474 ofs = 12.17 hrs = 2,136 cuft = 48 = 0 ft = 10.00 min = Custom = 484

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Time interval Distribution

= 5 min = Custom

Q (cfs)

Prop Basin (Perv) Hyd. No. 6 -- 100 Year

Q (cfs)

0.50

0.45

0.40

0.35

0.30

0.25

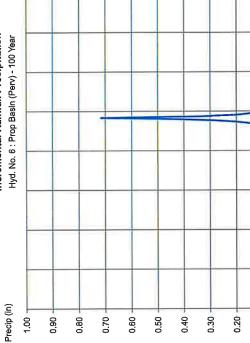
0.20

0.50

0.45

0.40

0.35


0.30

0.25

0.20

Precip (In) 1.00

0.90 0.80 0.70

0.40 0.30 0.20 0.10

0.50

0.60

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

2.5

0.0

TIme (hrs)

00'0

00'0

26

24

22

20

18

16

4

42

9

œ

9

0

000

0.05

0.10

0.15

Hyd No. 6

0.10

0.05

0.15

0.10

0.00

25.0

22,5

20.0

15.0

Time (hrs)

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v8.1

Hyd. No. 7

Hydrograph type Storm frequency Time interval Inflow hyds. Prop Total

= Combine = 100 yrs = 5 min = 5, 6

Peak discharge = 7.173 cfs
Time to peak = 12.17 hrs
Hyd. volume = 33,870 cuft
Contrib. drain. area = 1.460 ac

Hydrograph Report

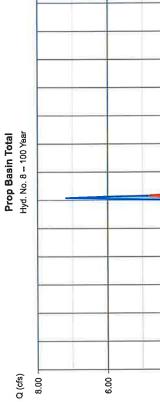
20

Tuesday, Sep 20, 2022

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 8

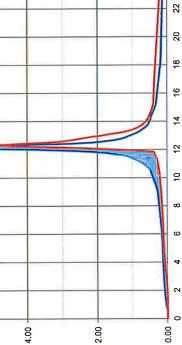
Prop Basin Total


Hydrograph type Storm frequency Time interval

Inflow hyd. No. Reservoir name

Reservoir
 100 yrs
 5 min
 7 - Prop Total
 Basin 2 (Rtank)

= 4.793 cfs = 12.33 hrs = 33,784 cuft = 115,15 ft = 9,793 cuft Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage


Storage Indication method used.

6.00

4.00

Q (cfs) 8.00

2.00

Time (hrs)

Total storage used = 9,793 cuft

---- Hyd No. 7

Hyd No. 8

0.00

28

26

24

Time (hrs) Q (cfs) 0.00 8.00 2.00 6.00 4.00 56 54 22 20 18 --- Hyd No. 6 16 Hyd. No. 7 -- 100 Year **Prop Total** 4 72 —— Hyd No. 5 9 ---- Hyd No. 7 8 0 Q (cfs) 0.00 8.00 2.00 4.00 6,00

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 10

Prop Und (Imp)

Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

= SCS Runoff = 100 yrs = 5 min = 0.230 ac = 0.0 % = USER = 8.21 in = NOAAAttas 14 Type-D.cds

Tuesday, Sep 20, 2022

Prop Und (Imp) = 1.317 cfs = 12.17 hrs = 6,238 cuft = 98 = 0 ft = 10.00 min = Custom

Hyd. No. 10

Storm Frequency Total precip. Storm duration

= 100 yrs = 8.2100 in = NOAA Atlas 14 Type-D.cds

= 5 min = Custom Time interval Distribution

Hyd. No. 10 : Prop Und (Imp) - 100 Year

Incremental Rainfall Precipitation

Precip (in) 1.00 0.90 0,80 0.70

Q (cfs)

Prop Und (Imp) Hyd. No. 10 -- 100 Year

Q (cfs)

2.00

2.00

Precip (in)

90. 0.90

0.80 0.70 0.60

0.50 0.40 0.30 0.20 0.10 0.00

09'0

9.

1.00

0.50

0,40 0.30 25.0

22.5

15.0

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

2.5

0.0

Time (hrs)

0.00

26

24

22

20

9

9

4

7

9

Hyd No. 10

o

00.0

Time (hrs)

0.20

0.10

52

Precipitation Report Hydraflow Hydrographs by Intellsolve v9.1

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 11

Prop Und (Perv)

= SCS Runoff = 100 yrs = 5 min = 0.480 ac = 0.0 % = USER = 8.21 in = NOAA Atlas 14 Type-D.cds Hydrograph type Storm frequency Time interval Drainaga area Basin Slope Tc method Total precip.

= 1.289 cfs = 12.17 hrs = 5,333 cuft = 58 = 0 ft = 10.00 min = Custom = 484

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Precipitation Report

54

Tuesday, Sep 20, 2022

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 11

Prop Und (Perv)

Storm Frequency Total precip. Storm duration

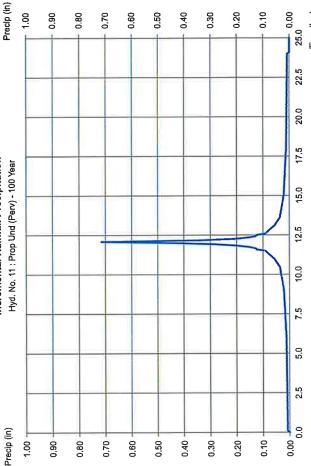
= 100 yrs = 8.2100 in = NOAA Atlas 14 Type-D.cds

Time interval Distribution

= 5 min = Custom

Q (cfs) 2.00

Hyd. No. 11 -- 100 Year Prop Und (Perv)


Q (cfs)

2.00

9.0 0.90

0.80 0.70 0.60

1.00

1.00

0.50 0.40 0.30 0.20 0.10 Time (hrs)

---- Custom Design Storm - NOAA Atlas 14 Type-D.cds

Time (hrs)

0.00

56

24

22

8

8

16

4

4

9

00

9

8

0

00'0

--- Hyd No. 11

Hydrograph Report

Hydraflow Hydrographs by Intelisolve v9.1

Hyd. No. 12

Prop Und (Total)

= Combine = 100 yrs = 5 min = 10, 11 Hydrograph type Storm frequency Time interval Inflow hyds.

Peak discharge = 2.606 cfs
Time to peak = 12.17 hrs
Hyd. volume = 11,572 cuft
Contrib. drain. area = 0.710 ac

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Tuesday, Sep 20, 2022

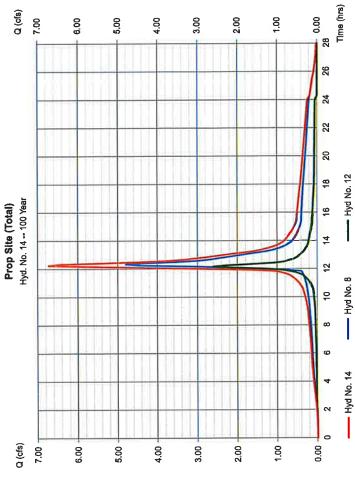
26

Hyd. No. 14

Prop Site (Total)

Hydrograph type Storm frequency Time interval Inflow hyds.

Combine100 yrs5 min8, 12


Peak discharge = 6.729 ofs
Time to peak = 12.25 hrs
Hyd. volume = 45,355 cuft
Contrib. drain, area = 0.000 ac

2.00 1.00 0.00 4.00 3.00 7.00 6.00 5.00 Time (hrs) Q (cfs) 0.00 3.00 2.00 1.00 26 24 22 2 8 16 Hyd. No. 12 -- 100 Year Prop Und (Total) 4 5 9 N Q (cfs) 2.00 000 3.00 1.00

—— Hyd No. 11

--- Hyd No. 10

--- Hyd No. 12

Hydraflow Rainfall Report

Hydraflow Hydrographs by Intellsolve v9.1

Tuesday, Sep 20, 2022

Return	Intensity-E	Intensity-Duration-Frequency Equation Coefficients (FHA)	Equation Coefficient	s (FHA)
(Yrs)	8	Q	ш	(N/A)
-	39.0824	9.5000	0.8528	1
8	45,6843	10.7000	0.8185	1
e	00000	0.0000	0.0000	
ιΩ	99.7061	14.8000	0.9304	-
9	249.7697	21.8001	1.0961	
55	115.7547	14.8000	0.8980	
99	7.3699	0.1000	0.2544	
9	403.8513	25.1001	1.1108	

File name: TRENTON.Idf

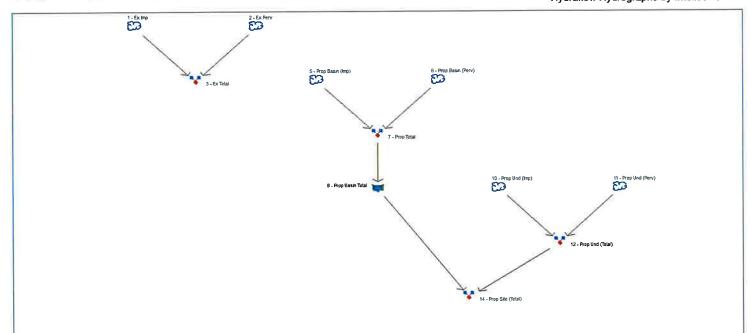
Intensity = B / (Tc + D)^E

Return					Intens	Intensity Values (in/nr)	(in/in/)					
(Yrs)	6 min	5	15	20	26	30	35	40	45	20	55	09
-	4.00	3.10	2.55	2.18	1.91	1.70	1.64	1,40	1.29	1.20	1,12	1.05
81	4.80	3,83	3.21	2.77	2.45	2.20	2.00	1.84	1.70	1,59	1.49	1.40
60	00'0	0.00	00.0	00'0	00.0	0.00	0.00	0.00	00'0	0.00	0.00	0.00
6	6.20	5.03	4.24	3.67	3.24	2.90	2.63	2.40	2.22	5.08	1.92	1.80
9	6.80	5,83	4.80	4.17	3,69	3.30	2.98	2.72	2,50	2.31	2.14	2.00
25	7.89	6,45	5.47	4.78	4.23	3.80	3.46	3.17	2.93	2.73	2.55	2.40
20	4.87	4.09	3,89	3,44	3.25	3.10	2.98	2,88	2.80	2.72	2,66	2.60
100	B.20	7.78	69'9	5.87	5,22	4.70	4.27	3.91	3,60	3,33	3.10	2.80

To = time in minutes. Values may exceed 60.

		X.	ainfall P	recipitat	Rainfall Precipitation Table (In)	e (In)		
Storm Distribution	1-yr	2-yr	3-ут	5-уг	10-ут	25-yr	50-yr	100-yr
SCS 24-hour	00'0	3.34	0.00	00'0	5.01	6.15	0.00	8.21
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0
Huff-1st	00:00	0.00	0.00	0.00	0.00	0.00	00'0	00'0
Huff-2nd	00:00	00'0	00.0	00'0	00'0	0.00	0.00	00'0
Huff-3rd	0.00	0.00	00'0	0.00	00'0	0.00	00'0	00'0
Huff-4th	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00
Huff-Indy	00'0	0.00	00.0	0.00	00'0	0.00	0.00	00'0
Custom	1.25	3.34	0.00	0.00	5.01	6.15	0.00	8.21

HYDROGRAPH SUMMARY REPORTS –WATER QUALITY STORM


Hydraflow Hydrographs by Intelisolve v9.1

Tuesday, Sep 20, 2022

Watershed Model Schematic	. 1
Hydrograph Return Period Recap	. 2
1 - Year	
	3
Summary Report	. 3
Hydrograph Reports	* **
Hydrograph No. 1, SCS Runoff, Ex Imp	. 4 5
Precipitation Report	: D
Hydrograph No. 2, SCS Runoff, Ex Perv	
Precipitation Report	× /
Hydrograph No. 3, Combine, Ex Total	8
Hydrograph No. 5, SCS Runoff, Prop Basin (Imp)	. 9
Precipitation Report	10
Hydrograph No. 6, SCS Runoff, Prop Basin (Perv)	11
Precipitation Report	12
Hydrograph No. 7, Combine, Prop Total	13
Hydrograph No. 8, Reservoir, Prop Basin Total	14
Pond Report - Basin 2 (Rtank)	15
Hydrograph No. 10, SCS Runoff, Prop Und (Imp)	16
Precipitation Report	17
Hydrograph No. 11, SCS Runoff, Prop Und (Perv)	18
Precipitation Report	19
Hydrograph No. 12, Combine, Prop Und (Total)	20
Hydrograph No. 14, Combine, Prop Site (Total)	21
Try drog suprifice try combine, trop one (total)	
IDF Report	22

Hydraflow Hydrographs by Intelisolve v9.1

Watershed Model Schematic

<u>Legend</u>

<u>Hyd.</u>	<u>Origin</u>	<u>Description</u>
1	SCS Runoff	Ex Imp
2	SCS Runoff	Ex Perv
3	Combine	Ex Total
5	SCS Runoff	Prop Basin (Imp)
6	SCS Runoff	Prop Basin (Perv)
7	Combine	Prop Total
8	Reservoir	Prop Basin Total
10	SCS Runoff	Prop Und (Imp)
11	SCS Runoff	Prop Und (Perv)
12	Combine	Prop Und (Total)
14	Combine	Prop Site (Total)

Project: WQ.gpw

Tuesday, Sep 20, 2022

Hydraflow Hydrographs by Intelisolvs v9.1

Hydrograph Return Period Recap

ณ

Hydrograph Summary Report

_	,
į	l
9	l
8	l
<u></u>	I
<u>►</u>	l
5	I
ab	I
rograpi	l
<u>ই</u>	I
≥	l
ydrallo	
Ē	
Ī	

Prop Basin (Perv) Prop Basin (Imp)

Ex Perv Ex Total

100-Yr

50-Yr

25-Yr

5-Yr

3-Yr

2-Yr

1.⊀

Inflow Hyd(s)

Hyd. Hydrograph No. type (origin)

0.628

SCS Runoff

Combine

SCS Runoff

0.954

SCS Runoff

SCS Runoff

0.954

Peak Outflow (cfs) 10-Yr Prop Total

Prop Basin Total

Prop Und (Total) Prop Site (Total)

Prop Und (Perv) Prop Und (Imp)

0.000

SCS Runoff

5 = 5

Combine Cambine

SCS Runoff

Reservoir

Combine

0.343

8, 12,

4

Hydrograph description	Hyd.	f. Hydrograph type (origin)	Peak flow (cfs)	Time Interval (min)	Time to peak (min)	Hyd. volume (cuff)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
	-	SCS Runoff	0.628	s	730	2,711	1	Į	1	ExImp
	2	SCS Runoff	0.000	ιO	в/и	0	1	I		Ex Perv
	ю	Combine	0.628	40	730	2,711	1, 2	ı	I	Ex Total
(dml) ul	ť0	SCS Runoff	0.954	2	730	4,119	ı	l		Prop Basin (Imp)
In (Perv)	60	SCS Runoff	0.000	0	n/a	0	i		ı	Prop Basin (Perv)
_	7	Combine	0.954	w	730	4,119	5,6	1	İ	Prop Total
in Total	60	Reservoir	0.198	vo.	760	4,033	7	112.58	1,775	Prop Basin Total
(Imp)	10	SCS Runoff	0.188	ĸ	730	810	į	I	I	Prop Und (Imp)
I (Perv)	+	SCS Runoff	0.000	'n	n/a	0	ı	1		Prop Und (Perv)
(Total)	12	Combine	0.188	ß	730	810	10, 11	ľ	l	Prop Und (Total)
(Total)	14	Combine	0.343	ß	730	4,843	8, 12,	1	1	Prop Site (Total)
)22	S	WQ.gpw				Return F	Return Period: 1 Year	381	Tuesday, 9	Tuesday, Sep 20, 2022

Tuesday, Sep 20, 2022

Proj. file: WQ.gpw

Hydrograph Report

Tuesday, Sep 20, 2022 Hydraflow Hydrographs by Intellsolve v8.1

Hyd. No. 1

Ex Imp

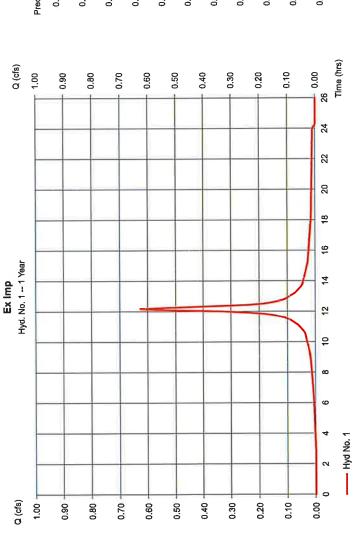
Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.

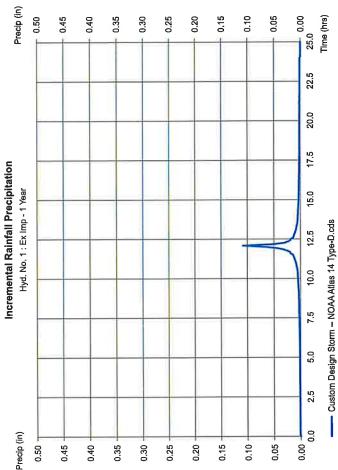
= SCS Runoff = 1 yrs = 5 min = 0.770 ac = 0.0 % = USER = 1.25 in = NOAAAttas 14 Type-D.cds

= 0.628 cfs = 12.17 hrs = 2.711 cuff = 98 = 0 ft = 10.00 min = Custom = 484 Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc) is
Distribution

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1


Hyd. No. 1


Ex Imp

Storm Frequency Total precip. Storm duration

= 1 yrs = 1.2500 in = NOAA Atlas 14 Type-D.cds

= 5 min = Custom Time interval Distribution

Hydrograph Report

Tuesday, Sep 20, 2022 Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 2

Ex Perv

= SCS Runoff = 1 yrs = 5 min = 1.400 ac = 0.0 % = USER = 1.25 in = NOAA Atlas 14 Type-D.cds

Hydrograph type Storm frequency Time interval Drainage area Basin Slope To method Total precip.

Peak discharge = 0.000 cfs
Time to peak = n/a
Hyd. volume = 0 cuft
Curve number = 61
Hydraulic length = 0 ft
Time of conc. (Tc) = 10.00 min
Distribution = Custom
Shape factor = 484

9

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 2

Ex Perv

Storm Frequency Total precip. Storm duration

= 1 yrs = 1.2500 in = NOAA Atlas 14 Type-D.cds

= 5 min = Custom Time interval Distribution

Incremental Rainfall Precipitation

Q (cfs)

Hyd. No. 2 -- 1 Year Ex Perv

> Q (cfs) 0.10

0.09

0.08

0.07

90.0

0.05

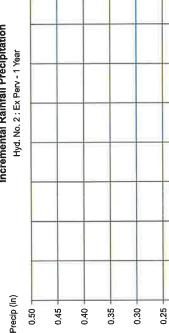
0.04

0.03

0.02

0.0

0.10


0.09

0.08

0.07

Precip (in)

0.50 0.45 0.40 0.35 0.30 0.25 0.20

Time (hrs)

0.00

5.0

4.2

2.5

1.7

—— Hyd No. 2

0.0 0.00

0.00

22.5

Time (hrs) 25.0

0.05

0.15

0.15 0.10 0.05

0.03

0.02

0.01

0.20

0.05

90'0

0.04

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 3

Ex Total

= Combine = 1 yrs = 5 min = 1, 2 Hydrograph type Storm frequency Time interval Inflow hyds.

Peak discharge = 0.628 cfs
Time to peak = 12.17 hrs
Hyd. volume = 2,711 cuft
Contrib. drain. area = 2.170 ac

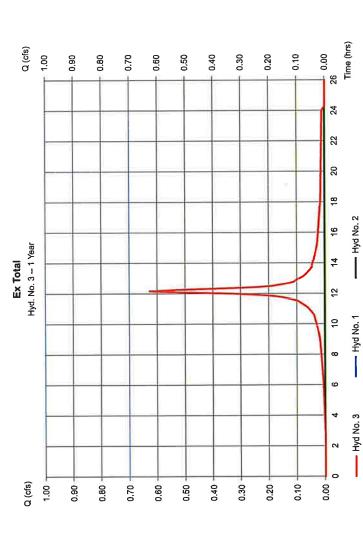
Φ

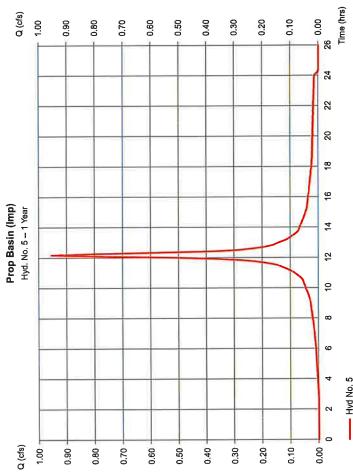
Tuesday, Sep 20, 2022

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 5


Prop Basin (Imp)


Hydrograph type Storm frequency Time interval

Drainage area Basin Slope Tc method Total precip. Storm duration

= SCS Runoff = 1 yrs = 5 min = 1.170 ac = 0.0 % = USER = 1.25 in = NOAAAtlas 14 Type-D.cds

= 0.954 cfs = 12.17 hrs = 4,119 cuft = 98 = 0 ft = 10.00 min = Custom = 484 Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 5

Prop Basin (Imp)

Storm Frequency Total preclp. Storm duration

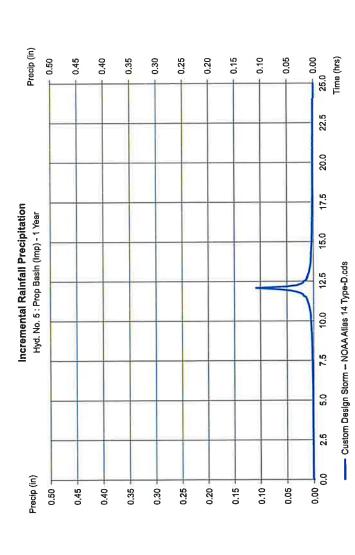
= 1 yrs = 1.2500 in = NOAA Atlas 14 Type-D.cds

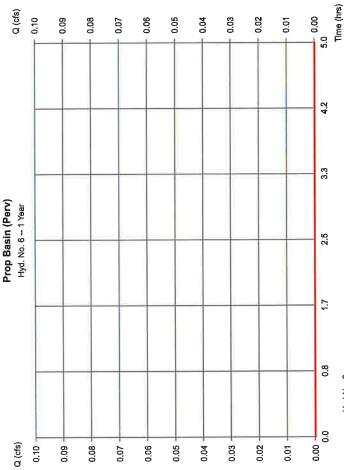
= 5 min = Custom Time interval Distribution

Hydrograph Report 9

Tuesday, Sep 20, 2022

Tuesday, Sep 20, 2022 Hydraflow Hydrographs by Intellsolve v8.1


Hyd. No. 6


Prop Basin (Perv)

Hydrograph type Storm frequency Time interval Drainage area Basin Slope To method Total precip.

= SCS Runoff = 1 yrs = 5 min = 0.290 ac = 0.0 % = USER = 1.25 in = NOAAAttas 14 Type-D.cds

= 0.000 cfs = n/a = 0 cuft = 0 ft = 10.00 min = Custom Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor

—— Hyd No. 6

Precipitation Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 6

Prop Basin (Perv)

Storm Frequency Total precip. Storm duration

= 1 yrs = 1.2500 in = NOAA Atlas 14 Type-D.cds

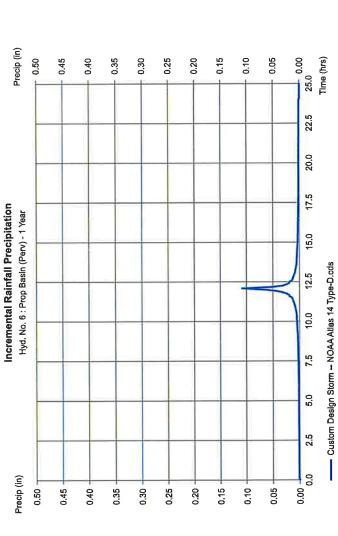
Tuesday, Sep 20, 2022

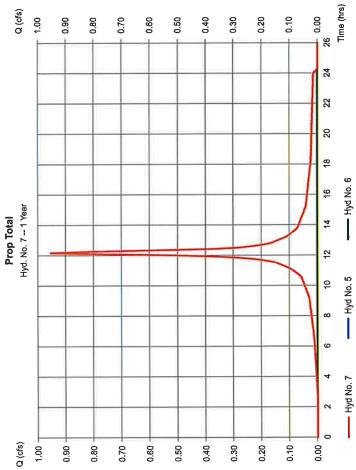
Hydrograph Report 12

Hyd. No. 7

Hydraflow Hydrographs by Intellsolve v9.1

Prop Total


= 5 min = Custom

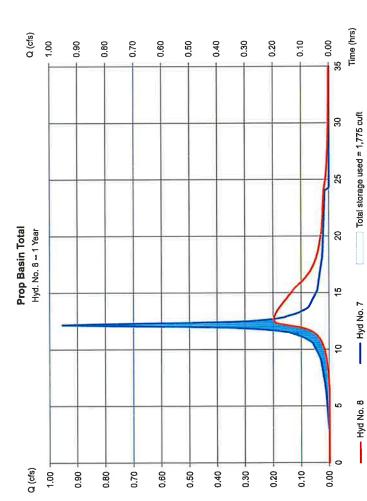

Time interval Distribution

Hydrograph type Storm frequency Time interval Inflow hyds.

= Combine = 1 yrs = 5 min = 5, 6

Peak discharge = 0.954 cfs
Time to peak = 12.17 hrs
Hyd. volume = 4,119 cuft
Contrib. drain. area = 1.460 ac

Hydrograph Report


uesday, Sep 20, 2022
_
solve v9.1
drographs by Intell
Hydraflow H

Hyd. No. 8

Prop Basin Total

= 0.198 cfs = 12.67 hrs = 4,033 cuft = 112.58 ft = 1,775 cuft Peak discharge Time to peak Hyd. volume Max. Elevation Max. Storage Reservoir1 yrs5 min7 - Prop TotalBasin 2 (Rtank) Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name

Storage Indication method used.

Pond Report

4

Pond Report	15
Hydraflow Hydrographs by Intellsolve v9.1	Tueeday, Sep 20, 2022
Dond No. 9 - Basin 9 (Blank)	

Pond No. 2 - Basin 2 (Rtank) Pond Data

Pond storage is based on user-defined values.

Stage / Si	Stage / Storage Table									
Stage (ft)	Elevation (ft)	Contour	Contour area (sqft)	Incr. Storage (cuft)	Total sto	Total storage (cuft)				
9	443.00	i e		c		c				
000	20041			1		101				
0,25	112,25	D/a		10)		2				
0,50	112.50	B/U		788	_	535				
0,75	112.75	n/a		768	Ŋ	303				
1.00	113.00	n/a	e1	769	erī	072				
1.25	113.25	n/a		768	e,	840				
150	113.50	n/a		768	4	608				
1.75	113.75	-		769	(c)	377				
2.00	114.00	n/a		768	9	145				
2.25	114.25	п/в		768	9	913				
2.50	114.50	n/a		768	7	681				
2.75	114.75	n/a		769	œ	450				
3.00	115.00	n/a		851	6	301				
3.25	115.25	e/u		941	10	242				
3.50	115.50	n/a		296	+	209				
3.75	115.75	n/a		189	Ŧ	398				
4 00	116.00	n/a		132	=	11,530				
4.05	116.05	n/a		17	1	547				
2	00001			=						
Culvert /	Culvert / Orifice Structures			Welr Structures	res					
	Æ	[B] [C]	[PrfRsr]		₹	<u>@</u>	<u>5</u>	<u> </u>		
Rise (In)	= 15.00	3.50 5.00	0.00	Crest Len (ft)	= 2.00	0.00	0.00	0.00		
Span (in)	= 15.00	3.50 16.00	0.00	Crest El. (ft)	= 114.75	00:0	0.00	0.00		
No. Barrels			0	Weir Coeff.	= 3.33	3,33	3.33	3.33		
Invert El. (ft)	t) = 112,00	112.01 113.80	0.00	Welr Type	= Rect	ı	ı	I		
Length (ft)				Multi-Stage	= Yes	°Z	õ	S		
Slope (%)	= 0.50	0.00 0.00	n/a							
N-Value	= .013	.013 .013	n/a							
Orifice Coeff.	ff. = 0.60		0.60	Exfll.(In/hr)	= 0.000 (b	= 0.000 (by Wet area)				
Multi-Stage	n/a = 1/a	Yes Yes	No	TW Elev. (ft)	□ 0.00					
		Note: Culver/Orifice	e outflows are analy	Note: Culvert/Onlice outllows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orilice conditions (it) and submengence (s)	I (oc) control. Well	r risars checked for	or orilice con	dilions (Ic)	and submer	(a) epue
Stage / S	Stage / Storage / Discharge Table	Table								
Stage	Storage Elevation	CI^ A	CIV B	CIVC PrfRsr WrA	A WrB	Wrc	۸	Ě	User	Total

(a) eous		Total	टी	0.00	0.10	0.18	0.23	0.28	0.35	0.38	0.39	0.81	1.72	2.29	2.73	3.90	5.71	7.35	8.68	9.53	9,68
and submerge		User	cls	!	ı	ļ	١	ŀ	i	I	ļ	!	!	I	ı	1	i	ı	!	ı	ı
dilions (Ic)		EXC	cfs	ı	!	ŀ	ı	į	ı	ı	i	1	ı	ı	Ę	l	ŀ	i	1	ı	Į
or orilice con		WrD	cfe	ŀ	ļ	i	ı	ŀ	1	ı	:	ı	i	ı	E	i	i	ł	I	i	i
sers checked		Wrc	cfs	1	į	I	Ė	ı	ŧ	ı	1	I	1	ı	ı	ı	1	I	ı	i	i
introl. Weir di		WrB	cfs	1	i	:	I	[ı	I	i	ı	:	I	ŀ	i	į	!	ı	i	ı
outlet (oc) co		WrA	cfs	0.00	00.0	00'0	0.00	00'0	0.00	00.0	0.00	00.0	00'0	00'0	00:0	0.83	2.35	4.33	6.19 s	7.39 s	7,59 9
ar Intel (IC) and		PrfRsr	cfs	i	1	!	ı	1	ı	ı	i	1	!	!	i	1	ı	1	1	ļ	ļ
analyzed unde		Civ C	cfs	00'0	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.41 10	1.32 lc	1,88 lc	2,30 lc	2.86 ic	2.98 lc	2.70 %	2.22 lo	1.92 fc	1.87 lc
a outflows are		CIV B	cfs													0.40 lc					
Note: Culvert/Orifice outflows are analyzed under inlei (ic) and outlei (oc) control. Wair risars checked for orifice conditions (ic) and submengence (s)	able	CIV A	cfs	0.00	0,10 lc	0.18 ic	0,24 lc	0.29 lc	0,33 lc	0.37 lc	0.39 lc	0.83 lc	1.72 00	2,30 oc	2.73 00	3,90 oc	5.71 oc	7.35 oc	8.68 oc	9.53 00	9.68 oc
_	Stage / Storage / Discharge Table	Elevation	£	112.00	112.25	112,50	112,75	113.00	113,25	113.50	113,75	114.00	114.25	114.50	114.75	115.00	115,25	115.50	115.75	116.00	116.05
	Storage / [Storage	cuft	0	767	1,535	2,303	3,072	3,840	4,608	5,377	6,145	6,913	7,681	8,450	9,301	10,242	11,209	11,398	11,530	11.547
	Stage / §	Stage	#	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2,75	3.00	3.25	3.50	3,75	4.00	4.05

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 10

Prop Und (Imp)

= SCS Runoff = 1 yrs = 5 min = 0.230 ac = 0.0 % = USER = 1.25 in = NOAA Atlas 14 Type-D.cds Hydrograph type Storm frequency Time interval Drainage area Basin Slope Tc method Total precip.

Peak discharge = 0.188 cfs
Time to peak = 12.17 hrs
Hyd. volume = 810 cuft
Curve number = 98
Hydraulic length = 0 ft
Time of conc. (Tc) = 10.00 min
Distribution = Custom
Shape factor = 484

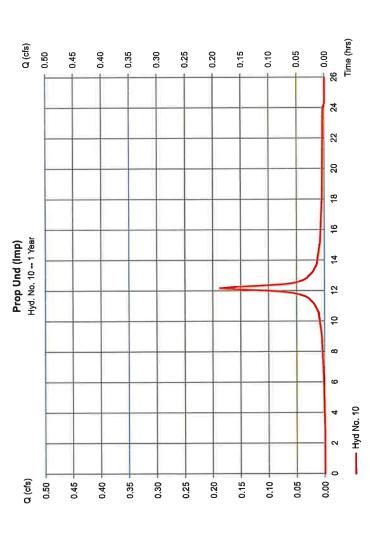
16

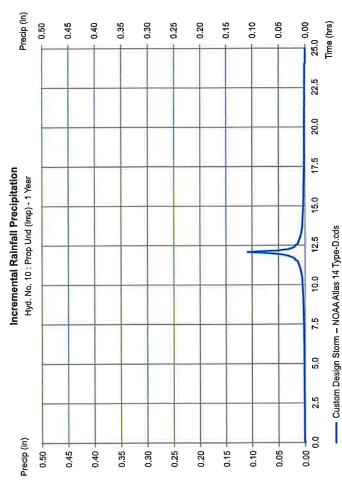
Tuesday, Sep 20, 2022

Hyd. No. 10

Hydraflow Hydrographs by Intelisolve v9.1

Precipitation Report


Prop Und (Imp)


Storm Frequency Total precip. Storm duration

= 1 yrs = 1,2500 in = NOAA Atlas 14 Type-D.cds

Time interval Distribution

= 5 min = Custom

Hydrograph Report

Hydraflow Hydrographs by Intellsoive v8.1

Hyd. No. 11

Hydrograph type
Storm frequency
Time interval
Drainage area
Basin Slope
Tc method
Total precip.
Storm duration Prop Und (Perv)

= SCS Runoff = 1 yrs = 5 min = 0.480 ac = 0.0 % = USER = 1.25 in = NOAAAtlas 14 Type-D.cds

Q (cfs)

Hyd. No. 11 -- 1 Year Prop Und (Perv)

0.10 Q (cfs)

0.09

0.10

Peak discharge
Time to peak
Hyd. volume
Curve number
Hydraulic length
Time of conc. (Tc)
Distribution
Shape factor = 0.000 cfs = n/a = 0 cuft = 58 = 0 ft = 10.00 min = Custom = 484 0.000 cfs

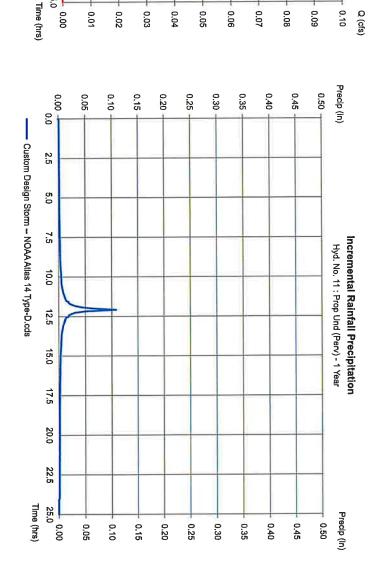
Tuesday, Sep 20, 2022

18

Precipitation Report

Hydraflow Hydrographs by Intellsoive v9.1

Tuesday, Sep 20, 2022


19

Time Interval Distribution

Prop Und (Perv) Hyd. No. 11

Storm Frequency
Total precip.
Storm duration = 1 yrs = 1.2500 in = NOAA Atlas 14 Type-D.cds

= 5 min = Custom

0.02

0.01

0,00

0.0

8.0

17

2.5

. 3

4.2

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hyd No. 11

0.03

0.04

0.06

0.05

0.07

0.08

0.09

Hydrograph Report

Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 12

Hydrograph type Storm frequency Time interval Inflow hyds. Prop Und (Total)

= Combine = 1 yrs = 5 min = 10, 11

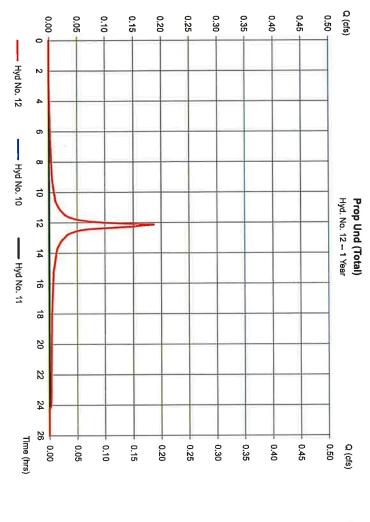
Peak discharge = 0.188 cfs
Time to peak = 12.17 hrs
Hyd. volume = 810 cuft
Contrib. drain. area = 0.710 ac

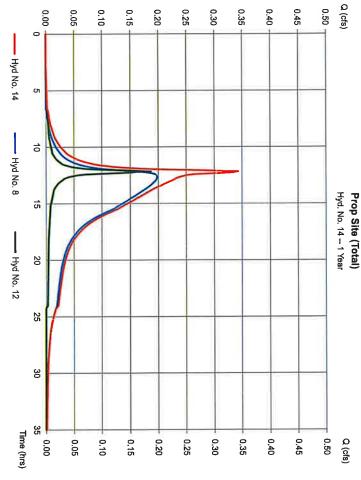
Hydrograph Report

20

Tuesday, Sep 20, 2022 Hydraflow Hydrographs by Intellsolve v9.1

Hyd. No. 14


Prop Site (Total)


Hydrograph type Storm frequency Time interval Inflow hyds. = Combine = 1 yrs = 5 min = 8, 12

Peak discharge = 0.343 cfs
Time to peak = 12.17 hrs
Hyd. volume = 4,843 cuft
Contrib. drain. area = 0.000 ac

Tuesday, Sep 20, 2022

2

Hydraflow Rainfall Report

Hydraflow Hydrographs by Intellsolve v9.1

Tuesday, Sep 20, 2022

Return	Intensity-C	Intensity-Duration-Frequency Equation Coefficients (FHA)	Equation Coefficien
(Yrs)	В	D	m
_	39.0824	9,6000	0,8528
N	45.6943	10.7000	0.8185
မ	0.0000	0.0000	0,0000
(Ja	99.7061	14.8000	0.9304
6	249.7597	21.8001	1.0961
25	115.7547	14.8000	0.8980
50	7,3699	0,1000	0.2544
6	403,8513	25,1001	1.1108

File name: TRENTON.idf

Intensity = B / $(Tc + D)^E$

Return					Intene	Intensity Values (in/hr)	(ln/hr)					
(Yre)	6 min	6	하	20	25	æ	35	40	46	50	55	60
-	4.00	3.10	2.55	2.18	1.91	1.70	1.54	1,40	1.29	1.20	1.12	1.05
20	4.80	3,83	3,21	2.77	2.45	2.20	2.00	1.84	1.70	1.59	1.49	1.40
မ	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
On .	6.20	5.03	4.24	3.67	3.24	2,90	2.63	2.40	2.22	2.06	1.92	1.80
6	6.80	5,63	4.80	4.17	3,69	3.30	2.98	2,72	2.50	2,31	2.14	2.00
25	7.89	6,45	5,47	4.76	4.23	3.80	3,46	3.17	2,93	2.73	2.55	2.40
60	4.87	4.09	3.69	3,44	3,25	3.10	2,98	2.88	2.80	2.72	2.66	2.60
100	9,20	7.76	6,69	5.87	5,22	4.70	4.27	3.91	3.60	3,33	3.10	2.90

Tc = time in minutes. Values may exceed 60.

		70	ainfall P	recipitat	Rainfall Precipitation Table (in)	n Table (In)	Sometion	County
Storm Distribution	1-yr	2-yr	3-уг	5-yr	10-уг	25-уг	50-yr	100-уг
SCS 24-hour	0.00	3.34	0.00	0.00	5.01	6,15	0.00	8.21
SCS 6-Hr	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
Huff-1st	0.00	0.00	0.00	0,00	0.00	0.00	0,00	0.00
Huff-2nd	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-3rd	0,00	0.00	0.00	0.00	0,00	0.00	0.00	0.00
Huff4th	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Custom	1.25	3,34	0.00	0.00	5.01	6.15	0.00	8.21

22

STORMWATER COLLECTION SYSTEM CALCULATIONS (PIPESIZING)

Inlet Area Summary and Average Coefficient (C) Calculations

Project: Proposed 4-Story Self Storage Facility

Job #: 3041-99-010

Location: Borough of North Plainfield

Computed By: MDC

Checked By:

Date: 8/30/2022

Drainage	Impervious	Coefficient	Open Space	1		Total Area (SF)	
Area	Area (sf)	(C) Used	(SF)	(C) Used	(C) Used		(acres)
IA #11	1223	0.95	2007	0.35	0.58	3231	0.07
IA #12	1375	0.95	1499	0.35	0.64	2874	0.07
IA #13	1376	0.95	1495	0.35	0.64	2871	0.07
IA #14	1372	0.95	1320	0.35	0.66	2692	0.06
IA #28	2082	0.95	2361	0.35	0.63		
IA #1	1092	0.95	1718	0.35	0.58		
IA #2	1351	0.95	1341	0.35	/		
IA #3	743	0.95	919			1662	
IA #4	1970	0.95	0	0.35			
IA #5	1380	0.95	0	0.35	0.95		
IA #6	1378	0.95	0	0.35	0.95		
Roof Area #1	2123	0.95	0	0.35			
Roof Area #2	2628	0.95	0				
Roof Area #3	3171	0.95	0				
Roof Area #4	2628	0.95	0	0.35			
Roof Area #5	2628	0.95	0	0.35	0.95		
Roof Area #6	2123	0.95	0	0.35	0.95		
Roof Area #7	2123	0.95	0	0.35	0.95		
Roof Area #8	2628	0.95	0	0.35	0.95		
Roof Area #9	2628	0.95	0	0.35			
Roof Area #10	3171	0.95	0	0.35			
Roof Area #11	3830	0.95	0	0.35	0.95		
IA #27	3623	0.95	1205	0.35	0.80	4828	0.11

Stormwater Collection System Calculations Project: Proposed 4-Story Self Storage Facility Computed By: Job #: 3041-99-010 Checked By:

Location: Borough of North Plainfield Design Storm: 25-year

Date: 8/30/2022

NOTES:

1) Design method used is Rational Method, unless otherwise noted. 2) Refer to Weighted Runoff Coefficient table

for calculation of incremental areas and C values

	pe city s)	2,67	4.04	2.67	4.04	2.67	4.04	2.67	2.67	4.04	2.67	4.04	4.04	4.04	4.04	2.67	4.04	2.67	2.67	4.04	2.67	4.04	2.67	4.04	5.71
\TA	Pipe Velocity (fps)																								0(
PIPING DATA	Pipe Capacity (cfs)	0,93		0.93			4.95			4.95			4.95	4,95	4.95				0.93		0.93	4.95		4.95	
Ы	Slope (fl/ft)	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0050	0.0100
UT	Man. "n"	0.012	0.012		0.012	0.012		0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012		0.012	0.012	0.012	0.012	0.012	0.012	0.012	0.012
PIPING INPUT	Length (Ft)	20.0	56.0	20.0	0.09	20.0	0.09	20.0	20.0	0.19	20.0	46.0	29.0	39.0	63.0	20.0	67.0	20.0	20.0	0.09	20.0	48.0	20.0	40.0	4.0
PIPI	Dia, (In)	80	15	8	15	8	15	00	8	15	8	15	15	15	15	8	15	8	000	15	8	15	80	15	15
JNOFF	Q cum for Pipe (CFS)	0.34	0.61	0.41	1.29	0,41	1.94	0.41	0.88	3.07	0.34	3.74	0.20	0.48	0.61	0.34	1.27	0.41	0.82	2.27	0.48	2.89	19'0	3.88	4.49
PEAK RUNOFF	Q to Inlet (CFS)	0.34	0.27	0.41	0.27	0.41	0.27	0.41	0.48	0.27	0.34	0.39	0.20	0.27	0.14	0.34	0.33	0.41	0.41	0.20	0.48	0.20	0.61	3.88	0.61
1	(In/Hr)	08.9	08'9	08'9	08'9	08.9	89'9	08'9	08.9	89.9	08'9	95'9	08'9	08'9	08'9	08.9	89.9	08.9	08.9	89 9	08.9	95'9	08'9	08'9	08.9
NOI	Final Tc (min)	10,00	10.12	10.00	10.35	10.00	10.60	10.00	10.12	10.85	10,00	11.10	10.00	10.24	10.40	10.00	10.66	10.00	10.12	10.94	10.00	11,19	10.00	10.00	10.17
TIME OF CONCENTRATION	Te in Pipe (min.)	0.12	0.23	0.12	0.25	0,12	0.25	0.12	0.12	0.25	0.12	0.19	0.24	0.16	0.26	0.12	0,28	0.12	0.12	0.25	0.12	0.20	0.12	0.17	0.01
CONCI	Tc to Inlet (min)	10,00	10.00	10.00	10.00	10.00	10.00	10.00	10,00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
CUMULATIVE	A x C (acres)	0.05	60.0	90.0	0.19	90'0	0.29	90.0	0.13	0.46	0.05	0.57	0.03	0.07	60.0	0.05	0.19	90.0	0.12	0.34	0.07	0.44	0.09	0.57	0.66
INCREMENTAL	AxC Ac	0.05	0.04	90.0	0.04	90.0	0.04	90.0	0.07	0.04	0.05	90.0	0.03	0.04	0.02	0.05	0.05	90.0	90.0	0.03	0.07	0.03	60'0	0.57	60.0
INCRI	.J.	0.95	0.58	0.95	0.64	0.95	0.64	0.95	0.95	99.0	0.95	0,63	0.58	0.65	0.62	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	08.0
SUBCATCHMENT AREA	Arca (Acres)	0.05	0.07	90'0	0.07	90'0	0.07	90'0	0.07	90.0	0.05	0.10	0.06	90.0	0.04	0.05	0.05	90'0	90.0	0.03	0.07	0.03	0.09	09'0	0.11
CTION	TO	Inlet #11	Inlet #12	Inlet #12	Inlet #13	Inlet #13	Inlet #14	Roof#3	Inlet #14	Inlet #28	Inlet #28	MH #16	Inlet #2	Inlet #3	Inlet #4	Inlet #4	Inlet #5	Roof#8	Inlet #5	Inlet #6	Inlet #6	Manhole #7	Manhole #7	Inlet #27	MH #22
PIPE SECTION	FROM	Roof #6	Inlet #11	Roof#5	Inlet #12	Roof#4	Inlet#13	Roof#2	Roof#3	Inlet #14	Roof#1	Inlet #28	Inlet #1	Inlet #2	Inlet #3	Roof#7	Inlet #4	Roof#9	Roof#8	Inlet #5	Roof#10	Inlet #6	Roof#11	OCS #21	Inlet #27

REPORT OF GEOTECHNICAL AND STORMWATER BASIN AREA INVESTIGATION, PREPARED BY DYNAMIC EARTH, LLC

REPORT OF PRELIMINARY GEOTECHNICAL AND STORMWATER BASIN AREA INVESTIGATION

PROPOSED THREE-STORY SELF-STORAGE FACILITY

825 New Jersey State Highway (NJSH) Route 22 West Block 119.00, Lot 1.01 Borough of North Plainfield, Somerset County, New Jersey

Prepared for:

INSITE PROPERTY GROUP 811 N. Catalina Avenue, Suite 1306 Redondo Beach, CA 90277

Prepared by:

245 Main Street, Suite 110 Chester, New Jersey 07930

Patrick J. Granitzki, P.E.

Principal

NJ PE License No. 24GE05355900

Francis Van Cleve, P.E.

Project Manager

NJ PE License No. 24GE05534500

Project #3041-99-010E August 10, 2021

REPORT OF PRELIMINARY GEOTECHNICAL AND STORMWATER BASIN AREA INVESTIGATION

Proposed Three Story Self-Storage Facility 825 NJSH Route 22 West Block 119.00, Lot 1.01 Borough of North Plainfield, Somerset County, New Jersey

TABLE OF CONTENTS

1.0	EXEC	CUTIVE SUMMARY	1
2.0	PROJ	ECT DETAILS	1
3.0	SCOF	PE OF SERVICES	2
	3.1	Field Investigation	2
	3.2	Laboratory Testing Program	4
4.0	SUM	MARY OF SUBSURFACE CONDITIONS	5
	4.1	Site Geology	5
	4.2	Soil Survey	5
	4.3	Subsurface Soil Profile	5
	4.4	Seasonal High Groundwater and Groundwater	6
5.0	PREI	LIMINARY GEOTECHNICAL RECOMMENDATIONS	7
	5.1	General	7
	5.2	Preliminary Shallow Foundation Design Recommendations	
	5.3	Preliminary Floor Slab Recommendations	
	5.4	Preliminary Pavement Recommendations	10
	5.5	Preliminary Groundwater Considerations	11
	5.6	Preliminary Earthwork Considerations	12
	5.7	Retaining Walls and Lateral Earth Pressure Recommendations	15
	5.8	Mottling, Groundwater and Soil Permeability	16
	5.9	Preliminary Seismic and Liquefaction Considerations	17
	5.10	Temporary Excavations	
	5.11	Supplemental Evaluation and Investigation	17
6.0	GEN	ERAL COMMENTS AND LIMITATIONS	19

REPORT OF PRELIMINARY GEOTECHNICAL AND STORMWATER BASIN AREA INVESTIGATION

Proposed Three Story Self-Storage Facility 825 NJSH Route 22 West Block 119.00, Lot 1.01 Borough of North Plainfield, Somerset County, New Jersey

TABLE OF CONTENTS

APPENDICES

Test Location Plan
Records of Subsurface Exploration
Laboratory Test Results
NRCS – USDA Custom Soil Resource Report for Somerset County
Geotechnical Terms and Symbols
USCS Standard Classification System

1.0 EXECUTIVE SUMMARY

Dynamic Earth, LLC (Dynamic Earth) has completed a preliminary geotechnical investigation and stormwater basin area investigation at the subject site. The subsurface conditions encountered generally consisted of existing fill material underlain by residual soils and weathered rock. As detailed herein, the existing fill material is not suitable for direct foundation support without the risk of excessive settlement and will need to be overexcavated and replaced with approved structural fill material where encountered below proposed foundations. The existing fill material is expected to be at least partially suitable for support of proposed floor slabs and pavements; however due to the debris encountered and potential variability of the fill material, at least partial overexcavation and replacement and/or subgrade stabilization should be anticipated. Following overexcavation of the existing fill material, we preliminarily anticipate the proposed structure may be supported on a conventional shallow foundation bearing within properly compacted structural fill and/or approved portions of the natural residual soils.

2.0 PROJECT DETAILS

The subject site is located at 825 New Jersey State Highway (NJSH) Route 22 West in the Borough of North Plainfield, Somerset County, New Jersey and is further identified as Block 119.00, Lot 1.01. The subject site is bordered directly to the east by a bank (Capital One Rewards), with NJSH Route 22 beyond; to the south by the NJSH Route 22 exit ramp; and to the west and north by residential properties. The site of the proposed construction is shown on the attached *Test Location Plan* within the Appendix of this report.

At the time of Dynamic Earth's investigation, the subject site was developed with a vacant two-story building with associated pavement, utilities, and landscaped/wooded areas. The proposed site redevelopment will include demolition of the existing structure and construction of a three-story self-storage facility building occupying a footprint area of approximately 30,026 square feet. Additional improvements include new pavement, utilities, loading docks, retaining walls and potential stormwater management facilities. A retaining wall of unknown type/height is proposed within the northern portion of the site that will have a total length of approximately 435 linear feet. Conceptual site plans were provided on an August 4, 2021 Conceptual Site Plan A prepared by Dynamic Engineering Consultants, PC (Dynamic). Proposed grading plans were not available at this time; however, we preliminarily expect site grades will remain relatively close to existing grades, with only minor earth cuts and fills throughout the majority of the site. Earth cuts are anticipated during installation of the retaining wall within the northwestern portion of the site.

Topographic information was provided on a July 20, 2021 ALTA/NSPS Land Title Survey prepared by Dynamic Survey, LLC. Existing site elevations range generally slope downward from north to south; ranging from approximately 125 feet within the northern portion of the site and 110 feet InSite Property Group

1 3041-99-010E

within the southern portion of the site. The elevations herein reference the North American Vertical Datum of 1988 (NAVD 88), unless otherwise noted.

Proposed architectural details and structural loading conditions were not finalized at the time of this report. However, we understand the proposed building will be three-stories in height and will be constructed with a slab-on-grade and no basement. The maximum anticipated column loads were provided by the structural engineer and expected to be as follows.

> Axial column load – 100 kips;

The maximum anticipated wall, floor slab and pavement loads were preliminarily assumed based on similar projects and are expected to be as follows:

- > wall loads 3.0 kips per linear foot;
- ▶ floor slab loads 125 pounds per square foot; and
- > pavement 200,000 18-kip Equivalent Single Axle Loads (ESAL)

The scope of Dynamic Earth's investigation and the professional advice contained in this report were generated based on the project details and loading noted herein. Any revisions or additions to the design details enumerated in this report should be brought to the attention of Dynamic Earth for additional evaluation as warranted.

3.0 SCOPE OF SERVICES

3.1 Field Investigation

This preliminary investigation was conducted by means of three soil borings (identified as borings B-1 through B-3) and eight soil profile pit excavations (identified as soil profile pits SPP-1 through SPP-8). The borings were drilled using hollow stem auger drilling techniques with a truck-mounted drill rig. The soil profile pits were excavated with a rubber-tire backhoe. Test locations are summarized in the following table and are shown on the accompanying *Test Location Plan*.

T	EST LOCATION SUMMARY TABLE SUMMA	RY
M. L.	Drawaged Location	Final Depth
Number	Proposed Location	(feet)
B-1	Northeastern Portion of Building	33.61
B-2	Southeastern Portion of Building	12.51
B-3	Western Portion of Building	33.6¹
SPP-1	Southwestern Portion of Site	10.0
SPP-2	Southwestern Portion of Site	12.0
SPP-3	Western Portion of Building	12.0
SPP-4	North and Doubles of Devilding	11.0
SPP-5	Northern Portion of Building	12.0
SPP-6	Northeastern Portion of Site	10.0
SPP-7	Eastern Portion of Site	12.0
SPP-8	Eastern Portion of Site	12.0

Machine Refusal

The soil borings and soil profile pits were completed in the presence of a Dynamic Earth engineer who performed field tests, recorded visual classifications, and collected samples of the various strata encountered. The test locations were located in the field using normal taping procedures and estimated right angles. These locations are presumed to be accurate within several feet.

Soil borings and standard penetration tests (SPTs) were conducted in general accordance with ASTM D6151 (Standard Practice for Using Hollow-Stem Augers for Geotechnical Exploration and Soil Sampling) and ASTM D1586 (Standard Test Method for Standard Penetration Test and Split Barrel Sampling of Soils). The SPT resistance values (N) can be used as an indicator of the consistency of fine-grained soils and relative density of coarse-grained soils. Unconfined compressive strength (Qp) values were assessed with a pocket penetrometer within the fine-grained soils. The N-value and/or unconfined compressive strength for various soil types can be correlated with engineering behavior of soils to develop foundation and earthwork recommendations.

The soils encountered within the area of the proposed/anticipated stormwater management areas were classified using the United States Department of Agriculture (USDA) Classification System and observations were made for groundwater and/or soil mottling and mineral deposits potentially indicative of zones of saturation or seasonal high groundwater. The results of our preliminary stormwater basin soils area investigation are included herein.

Groundwater level observations were recorded during and at the completion of field operations prior to backfilling the test locations. Seasonal variations, temperature effects, man-made effects, and recent rainfall conditions may influence the levels of the groundwater, and the observed levels will depend on the permeability of the soils. Groundwater elevations derived from sources other

than seasonally observed groundwater monitoring wells may not be representative of true groundwater levels.

Dynamic Earth previously completed a July 29, 2021 *Phase I Environmental Site Assessment* and an August 4, 2021 *Asbestos Containing Materials Survey* that were issued under separate covers. In addition, a Phase II Environmental Site Investigation was in progress at the time of this report.

3.2 Laboratory Testing Program

Physical/Textural Analysis: Each sample was subjected to supplemental identification and classifications in general accordance with ASTM D2488 (manual procedure). The engineering classifications are utilized in conjunction with the site data to estimate properties of the soil types encountered and to assess the soil response under construction and service loads.

Permeability Testing: Undisturbed tube permeameter tests were collected in general accordance with New Jersey Department of Environmental Protection (N.J.D.E.P.) Stormwater Best Practices Manual – Chapter 12: Soil Testing Criteria on representative samples obtained from anticipated stormwater management facility infiltration depths. Results of the permeability testing are included herein in Section 5.8.

4.0 SUMMARY OF SUBSURFACE CONDITIONS

4.1 Site Geology

The subject property is situated in the Newark Basin Geomorphic Province of New Jersey. Specifically, this area is underlain by the Lower Jurassic and Upper Triassic Passaic Formation, which is predominantly composed of reddish-brown to brownish-purple and grayish-red argillaceous siltstone; silty mudstone; argillaceous, very fine-grained sandstone; and shale. The surficial deposits at the site reportedly include Pleistocene-aged basalt colluvium (Qcb) that generally consists of clayey silt with basalt fragments. Overburden soils also include manmade fill material.

4.2 Soil Survey

Based on a review of the United States Department of Agriculture – Natural Resources Conservation Services (USDA-NRCS) soil survey the following soil resources are mapped underlying the area of the proposed site development:

Amwell gravelly loam, two to six percent slopes (AmdB): Amwell gravelly loam, two to six percent slopes is mapped within the majority of the subject site. The typical soil profile (as reported in the soil survey) consists of gravelly loam to a depth of 14 inches; clay loam to a depth of 21 inches; loam to a depth of 26 inches; underlain by fine sandy loam to a depth of 60 inches below the natural ground surface (limit of the report). The depth to groundwater table is reported to range between 24 inches and 36 inches below the natural ground surface.

Dunellen sandy loam, eight to 15 percent slopes (DunC): Dunellen sandy loam, eight to 15 percent slopes is mapped within a relatively small area within the western portion of the site. The typical soil profile (as reported in the soil survey) consists of sandy loam to a depth of 42 inches; underlain by loamy sand to a depth of 70 below the natural ground surface (limit of the report). The depth to the groundwater table is reported to be more than 80 inches below the natural ground surface (limits of the report).

4.3 Subsurface Soil Profile

Details of the subsurface materials encountered are presented on the *Records of Subsurface Exploration* presented in the Appendix of this report. The subsurface soil conditions encountered in the soil borings and soil profile pits consisted of the following generalized strata in order of increasing depth.

Surface Cover: Soil borings and soil profile pits performed within existing landscaped areas encountered existing fill material or approximately six to 12 inches of topsoil at the surface. One

soil boring location (B-3) performed within the existing pavement encountered approximately four inches of asphaltic concrete at the surface with no apparent underlying subbase material.

Existing Fill Material: At the surface and/or beneath the surface cover, existing fill material was encountered that generally consisted of silt with variable amounts of sand, gravel, clay, and debris. The debris encountered included brick, concrete, wood, glass, and asphalt. The existing fill material was encountered within the area of the proposed building footprint to depths ranging between approximately 2.7 feet and five feet below the ground surface; corresponding to elevations ranging between 114.5 feet 110.5 feet. SPT N-values within this stratum ranged between three blows per foot (bpf) and 35 bpf; and unconfined compressive strength pocket penetrometer (Q_p) values ranged between 0.5 tons per square foot (tsf) and 0.75 tsf.

Natural Residual Soils: Beneath the existing fill material, natural residual soils were encountered that generally consisted of silt (USCS: ML) with variable amounts of sand, clay and gravel. The natural residual soils were encountered to depths ranging between approximately eight feet and 24 feet below the ground surface; corresponding to elevations ranging between 104.5 feet and 95.5 feet. Except where refusal of the split spoon sampler was encountered, SPT N-values within this stratum ranged between nine bpf and 58 bpf, and averaged approximately 22 bpf. Unconfined compressive strength (Q_p) pocket penetrometer values within this stratum ranged between 1.5 tons per square foot (tsf) and four tsf; and averaged approximately 2.5 tsf, generally indicating a relatively very stiff consistency within the fine-grained soils.

Weathered Rock: Beneath the natural residual soils, weathered rock was encountered that generally consisted of gravel sized shale fragments (USCS: GM) with variable amounts of sand, silt, and clay. The weathered rock stratum was encountered within the borings to auger refusal depths ranging between approximately 12.5 feet and 33.6 feet below the ground surface; corresponding to elevations ranging between 100.0 feet and 81.9 feet. Split spoon refusal was encountered at each sample interval within this stratum, generally indicating a very dense/hard consistency.

4.4 Seasonal High Groundwater and Groundwater

Indicators of seasonal high groundwater (soil mottling) were observed within the soil profile pits at depths ranging between approximately 1.8 feet and four feet below the ground surface; corresponding to elevations ranging between 114.5 feet and 109.3 feet. Apparent perched/trapped water within the existing fill material was encountered at one soil profile pit location (SPP-4) at a depth of approximately four feet; corresponding to elevation 115.0 feet. Groundwater was encountered within the soil borings at depths ranging between approximately 26.0 feet and 29.0 feet; corresponding to elevations ranging between 90.5 feet and 89.5 feet. Groundwater levels are expected to fluctuate seasonally and following significant periods of precipitation.

5.0 PRELIMINARY GEOTECHNICAL RECOMMENDATIONS

5.1 General

The following preliminary considerations are based on the soil conditions encountered during our limited subsurface investigation for the proposed site development and are intended to provide general characteristics of the subsurface conditions for preliminary planning purposes and should not be utilized for final design of structural foundations, floor slabs, or pavements. Final recommendations pertaining to the geotechnical aspects of the site development will need to be developed from a supplemental subsurface investigation and engineering analyses of the final grading and structural plans.

Based on the results of this subsurface investigation, existing fill material was encountered within the proposed building footprint that is not suitable for direct foundation support without the risk of excessive settlement. As such, the existing fill material will need to be overexcavated and replaced with approved structural fill material where encountered below proposed foundations. Based on the subsurface conditions encountered as part of this preliminary investigation, overexcavation and replacement up to approximately five feet below the ground surface should be anticipated. Following overexcavation and replacement, the proposed structure may be supported on conventional shallow foundations bearing within approved structural fill material and/or approved natural residual soils.

Overexcavation and Supplemental Evaluation of Existing Fill Materials: Existing, undocumented fill materials were noted with sufficient variability to suggest uncontrolled conditions for foundation support. Based on the conditions disclosed by the soil borings, Dynamic Earth recommends overexcavating unsuitable existing fill where present below foundations, but anticipates that the majority of fill may remain in-place, where possible, below proposed floor slabs and pavements. Due to the potential variability of the existing fill material, at least partial overexcavation and replacement of unsuitable fill material should be expected beneath proposed floor slabs and pavements. A Dynamic Earth geotechnical engineer familiar with this study will be needed to provide careful construction phase inspection to maximize salvageable areas to remain and identify areas that must be removed and replaced. The supplemental evaluation via test pit excavations may be deferred to the demolition and construction phases.

Existing, undocumented fill materials cannot be conclusively evaluated solely based on soil borings because the sampling techniques expose a very small, approximately two inch split spoon sample at widely spaced locations and variable intervals. Therefore, engineering judgment and evaluation of risks needs to be applied to determine how to address the fill condition. Often, small pieces of debris are encountered which in some cases may appear to be the result of simply small fragments of materials intermixed in a well compacted soil matrix. However, in many cases the small pieces of recovered foreign material can be fragments of much larger or more extensive buried

objectionable material. In addition, undocumented fill on previously developed sites can vary substantially. Where deep fills would impact the foundation selection or where more definitive earthwork budgets are necessary, it is customary to conduct further exploration with supplemental test pit excavations to expose a larger cross section of the fill material and enable a better evaluation of the presence of voids, debris, organics, and general consistency. The decision as to whether to conduct such further evaluation during pre-design phases or during initial construction phases also is impacted by the site use and accessibility for larger disturbances, and the owner's risk tolerance for the specific project.

To develop geotechnical recommendations and consult with the client regarding how to address the existing fill on this site based on the information available, Dynamic Earth considered factors that weigh either negatively or positively toward the existing fill condition overall. Factors suggesting unsuitable conditions for foundation support include the presence of debris, occasional low split spoon sampler recovery and relatively low SPT N-values, which generally indicates that the material was placed or re-worked on-site without strict engineering control. Records documenting the fill placement also were not available to Dynamic Earth.

Existing fill material should be overexcavated prior to placing new fill material if site grades are raised. Furthermore, the proposed building footprint and interior column locations should be located by a professional surveyor prior to performing overexcavation operations.

The recommendations presented herein are sufficient to support the initial design and planning phase. These recommendations are contingent on the assumption that Dynamic Earth will remain involved in the final design process and that Dynamic Earth will be engaged to conduct the necessary construction phase geotechnical testing and inspection to ensure these recommendations are properly implemented.

5.2 Preliminary Shallow Foundation Design Recommendations

Anticipated Bearing Strata: Depending on final site grading plans and foundation bearing elevations, proposed foundations are expected to bear at least partially within the existing fill layer and partially within natural residual soils. As detailed throughout this report, the existing fill material is not suitable for direct foundation support and will need to be overexcavated and replaced where encountered below proposed foundation influence zones. Approved portions of the natural residual soils are expected to be suitable for support of proposed foundations. A Dynamic Earth geotechnical engineer familiar with this study will be needed to provide careful construction phase testing and inspection to maximize salvageable areas to remain and identify areas that must be removed and replaced.

Conventional Shallow Foundation Design Criteria: Following overexcavation and replacement of existing fill material, the proposed structures may be supported on conventional shallow foundations bearing within approved structural fill material and/or approved natural residual soils. Foundations may preliminarily be designed to impart a maximum allowable net bearing pressure of 3,000 pounds per square foot (psf). Regardless of loading conditions, proposed foundations should be sized no less than a minimum of 24 inches for continuous wall footings and 36 inches for isolated column footings.

Settlement: Dynamic Earth preliminarily estimates post construction settlements of proposed building foundations on the order of one inch if the recommendations outlined in this report are properly implemented. Differential settlements of building foundations should be less than one-half inch. Settlement estimates should be reviewed following supplemental geotechnical investigation and the development of final design loads.

Frost Depth: Footings subject to frost action should be placed at least 36 inches below adjacent exterior grades or as required by the local building code to provide protection from frost penetration. Interior footings not subject to frost action (including during the period of construction) may be placed at a minimum depth of 18 inches below the slab subgrade.

Inspection/Overexcavation Criteria: The suitability of the bearing soils along and below the footing bottoms must be verified by Dynamic Earth's geotechnical engineer prior to placing concrete, especially to confirm that unsuitable materials are removed and new fills are adequately placed and compacted. Any overexcavation to be restored with structural fill (on-site or imported) will need to extend at least one foot laterally beyond footing edges for each vertical foot of overexcavation. Alternatively, proposed foundations may be designed to bear deeper (below the existing fill) or lean concrete/flowable fill material may be used to minimize lateral overexcavation. The bottom of overexcavations should be compacted with smooth drum rollers, walk-behind compactors, vibrating plates or plate tampers ("jumping jacks") to compact locally disturbed materials and densify underlying natural soil zones.

5.3 Preliminary Floor Slab Recommendations

Dynamic Earth anticipates that the approved on-site soils and/or compacted structural fill material placed over approved natural subgrades will be suitable for support of the proposed floor slabs provided these materials are properly evaluated, compacted and proofrolled as detailed herein. Due to the deleterious debris encountered within the existing fill material and moisture sensitivity of the on-site soils, at least partial overexcavation and replacement and/or subgrade stabilization should be anticipated below proposed floor slabs. Depending on construction phase evaluation, overexcavation may be limited (to a typical depth of approximately two feet) with the use of geogrid reinforcement (such as Tensar TX-5 or TX-7 or equivalent). In addition,

any areas that become softened or disturbed as a result of wetting and/or repeated exposure to construction traffic should be removed and replaced with compacted structural fill. We preliminarily expect that the properly prepared on-site soils are expected to yield a minimum subgrade modulus (k) of 125 psi/in.

A minimum four-inch layer of stone should be installed below the floor slabs to provide a capillary break. A moisture vapor barrier beneath the floor slab is recommended. Total and post-construction settlements of floor slabs installed in accordance with the recommendations outlined in this report are estimated to be less than one-quarter inch.

5.4 Preliminary Pavement Recommendations

The on-site soils are preliminarily expected to be suitable for support of proposed pavements, provided that the risk of more frequent paving and/or increased maintenance is acceptable. If this risk is not acceptable, considerations for additional overexcavation and replacement or subgrade stabilization may be evaluated. Due to the potential variability of the existing fill material and moisture sensitivity of the on-site soils, at least partial overexcavation and replacement and/or subgrade stabilization should be anticipated below proposed pavements. Pavement life may benefit from using a geogrid (Tensar TX-5 or TX-7) to provide additional subgrade reinforcement to minimize the amount of overexcavation and attempt to stabilize marginally suitable subgrade soils. Depending on the overall subgrade conditions and weather conditions, more extensive mitigation efforts may be required.

Preliminary Design Criteria: A preliminary design California Bearing Ratio (CBR) value of five has been assigned to the anticipated properly prepared subgrade soils for pavement design purposes. This value was correlated with pertinent soil support values and assumed traffic loads to prepare flexible and rigid pavement designs per the AASHTO *Guide for the Design of Pavement Structures*.

Pavement Sections: The preliminary recommended flexible pavement section is presented below in tabular format. Alternate pavement design sections may be considered based on local requirements.

PRELIMIN	ARY RECOMMENDED FLEXIBLE PAVEMEN	T SECTIONS
Layer	Material ¹	Thickness (Inches)
Surface	HMA 9.5 64 (L or M) (Section 902.02.01) ²	1.5
Base	HMA 19.0 (L or M) (Section 902.02.01) ²	3.0
Subbase	DGA (Section 901.10) ²	6.0

Per New Jersey Department of Transportation Standard Specification for Road and Bridge Construction 2019

² Per the designation compaction level shall be "L" or Low for Standard Duty Pavement and "M" or Medium for Heavy Duty Pavement.

A rigid concrete pavement should be used to provide suitable support at areas of high traffic or severe turns, or relatively long-term point loads. The preliminary recommended rigid pavement is presented below in tabular format:

PRELIMIN	ARY RECOMMENDED RIGID PAVEM	ENT SECTION
Layer	Material	Thickness (Inches)
Surface	4,000 psi air-entrained concrete	5.0
Base	NJDOT DGA BASE COURSE	6.0

Additional Design Considerations: The preliminary pavement section thickness designs presented in this report are based on the design parameters detailed herein and are contingent on proper construction, inspection, and maintenance. The designs are contingent on achieving the minimum soil support value in the field. To accomplish this requirement, all subgrade soil and supporting fill or backfill must be placed, prepared, and evaluated which would be detailed in the final geotechnical report. Proper drainage must be provided for the pavement structure including appropriate grading and surface water control, as well as measures to drain water from the subgrade such as bleeder drains at inlets.

The performance of the pavement also will depend on the quality of materials and workmanship. Dynamic Earth recommends that New Jersey Department of Transportation (NJDOT) standards for materials, workmanship, and maintenance be applied to this site. Project specifications should include verifying that the installed asphaltic concrete material composition is within tolerance for the specified materials and that the percentage of air voids of the installed pavement is within specified ranges for the respective materials. All rigid concrete pavements should be suitably air-entrained, jointed, and reinforced.

5.5 Preliminary Groundwater Considerations

Depending on final grading plans, groundwater levels are expected to be slightly deeper than anticipated foundation bearing elevations. However, excavations extending below the seasonal high groundwater level and/or perched zone of saturation should be anticipated during overexcavation and replacement of existing fill material. As such, the contractor should anticipate the need for groundwater control during construction.

While groundwater control means and methods are the responsibility of the contractor, depending on the flow rate through the soil, groundwater may typically be controlled by sump pumps and strategically placed sump pits in and adjacent to excavations for relatively small areas where the rate of flow is relatively low. Larger excavations and excavations extending deeper than two feet below groundwater may require deeper well recovery points.

Surface water runoff must be controlled and diverted away from construction areas by grading and limiting the exposure of excavations to rainfall.

5.6 Preliminary Earthwork Considerations

Demolition/Surface Cover Stripping: Prior to the start of construction, all utilities should be identified and secured. Existing structural elements, such as concrete foundations, slabs, and remnant basement walls, should be removed entirely from below proposed foundations and slabs and excavated to at least two feet below pavement subgrades. Remnant structural elements may remain in-place below these depths below pavements provided they do not interfere with future construction. Any slabs left in-place should be thoroughly fractured to promote vertical drainage in the presence of a qualified Geotechnical Engineer and should be backfilled with structural fill in accordance with the recommendations included herein.

The surface cover materials, including asphalt, concrete, vegetation, and topsoil, should be removed from within, and at least five feet beyond, the limits of the proposed building and new pavement areas as well as any other area which will require fill placement. Removal of trees should include root mats and tree stumps.

Import/On-site Structural Fill Material: Soils placed as structural fill material should consist of well graded sand or gravel with a maximum particle size of three inches in diameter and less than 15 percent of material passing the number 200 sieve. These materials should be free of objectionable debris (clay clumps, organic and/or deleterious material, etc.) and within moisture contents suitable for compaction. Alternative soil types with higher percentages of silt and clay may be considered, provided that the contractor is able to achieve proper compaction and maintain suitable subgrade once the material is placed. Fine-grained soils and/or granular soils with higher percentages of silt and clay are extremely moisture sensitive and will only be suitable for reuse as structural fill material under ideal weather conditions. Materials wetted beyond the optimum moisture content; that contain oversized material or debris; or with increased amounts of objectionable debris will not be suitable for reuse as structural fill material without special handling. As such, the contractor should be responsible for importing structural fill material and/or processing on-site soils as required so that these materials are suitable for structural fill placement.

If encountered, cobbles, boulders and/or oversized debris greater than three inches in diameter will need to be separated from material to be placed as structural fill. Approved material between three to 12 inches in diameter may be crushed or individually placed in fill layers deeper than two feet below proposed subgrade levels. Care must be taken to individually seat any large particles and to

compact soil around large particles with hand operated equipment to minimize the risk of void formation. The larger material should not be placed near areas of proposed utilities or planned excavation. Boulders larger than approximately 12 inches are not expected to be adequate for use as fill or backfill and should be removed from the site or crushed to an adequate size.

The on-site materials include existing fill material, natural residual soils, and underlying weathered rock. Portions of the existing fill material and natural residual soils (above the zone of saturation) are preliminary anticipated to be suitable for reuse as structural fill material, provided moisture contents are within tolerable limits to achieve compaction and oversized and deleterious debris is segregated. Portions of the existing fill material contained increased amounts of objectionable debris and will not be suitable for reuse soils without significant handling/processing to segregate the deleterious materials. In addition, the on-site soils are considered extremely moisture sensitive and will likely require moisture conditioning during a period of favorable weather or become impractical for reuse if exposed to moisture. As such, the contractor should include a unit rate for importing granular structural fill material. The underlying weathered rock is generally not expected to be encountered during construction (depending on the final grading plans). Reuse of the on-site materials will be contingent upon further evaluation during construction.

Surface Preparation/Proofrolling: Prior to placing any fill or subbase materials to raise or restore grades to the desired building pad or pavement subgrade elevations, the existing exposed soils should be compacted to a firm and unyielding surface with several passes in two perpendicular directions with a vibratory, smooth drum roller during favorable moisture conditions. The drum roller should be operated in the static mode or a kneading "sheepsfoot" roller should be used where fine-grained soils are encountered at the subgrade elevation and/or where water is suspected near subgrade elevations. The surface should then be proofrolled with a loaded tandem axle truck in the presence of Dynamic Earth to help identify soft or loose pockets which may require removal and replacement or further investigation. Dynamic Earth anticipates at least partial overexcavation if the subgrade is wetted or subjected to repeated construction traffic. Any fill or backfill should be placed and compacted in accordance with the recommendations included herein.

Compaction and Placement Requirements: Structural fill and backfill should be placed in maximum 12 inch loose lifts and compacted to 95 percent of the maximum dry density within a targeted two percent of the optimum moisture content as determined by ASTM D 1557 (Modified Proctor). Variations in moisture content may be acceptable subject to Dynamic Earth's on-site geotechnical engineer's approval if the contractor is able to achieve the necessary compaction. Dynamic Earth recommends using a minimum 20-ton smooth drum roller to compact subgrade soils beneath pavements or slabs and hand operated vibratory jumping jacks and plate compactors within confined excavations for foundations or utilities. The drum roller should be operated in the static mode or a kneading "sheepsfoot" roller should be used to compact fine-grained soils. Fill

material compacted with hand operated equipment, static drum roller and/or sheepsfoot roller, may need to be placed in thinner, loose lifts and an increased number of passes may be required to achieve proper compaction.

Structural Fill Testing: Before filling operations begin, representative samples of each proposed fill material (on-site and imported) should be collected. The samples should be tested to determine the maximum dry density, optimum moisture content, natural moisture content, gradation, and plasticity of the soil. These tests are needed for quality control during compaction and also to determine if the fill material is acceptable. The placement of all fill and backfill will need to be monitored by Dynamic Earth to ensure that the specified material and lift thicknesses are properly installed. A sufficient number of in-place density tests should be performed during fill placement to ensure that the specified compaction is achieved throughout the height of the fill or backfill.

Submerged Fill: If excavation/overexcavations extend below water (in conjunction with dewatering methods), the backfill at excavations that extend below the groundwater level (in conjunction with dewatering methods) may consist of nominally one inch, crushed stone (such as AASHTO #57 Stone) placed to raise grade above water levels before subsequent lifts of structural fill. Submerged fill should be separated from surrounding soils (below, adjacent, and above) with a fines barrier geotextile, such as Mirafi FW700 or equivalent to prevent future migration of fines content from surrounding soils.

Difficult Excavation: As detailed throughout this report, existing fill material was encountered with variable amounts of debris. As evident by the test pit excavations, relatively larger cobble/boulder concrete debris was encountered within the existing fill material. Therefore, difficult excavation to remove oversized debris should be included as part of the construction planning.

While small boulders, cobbles and debris may typically be removed with conventional excavation equipment, heavy excavating equipment with rock ripping tools may be required for larger materials. The speed and ease of excavation will depend on the equipment used, the skill of the operator, and the structure of the material itself.

Demolition Material: Considerations for reuse of demolition material as fill material may be evaluated provided the material is properly segregated and processed to meet the gradation requirements of the structural fill material, as detailed herein. The deleterious building material (such as wood, insulation, metal, shingles, etc.) should not be used as fill material.

Asphalt Milling Reuse: Typically portions of existing asphaltic concrete may be reused within the subbase layer of the proposed pavement section (as detailed in Section 5.4), provided that environmental concerns do not preclude reuse. The millings should be processed to a maximum

particle size of 1.5 inches and blended (less than 50 percent) with approved dense-graded aggregate (DGA) in accordance with the NJDOT DGA Gradation requirements. The approved DGA material shall not contain with asphaltic millings prior to blending.

5.7 Retaining Walls and Lateral Earth Pressure Recommendations

General: While the retaining wall type has not been defined, Dynamic Earth understands a retaining wall with a total length of approximately 435 linear feet is proposed within the northern portion of the site. In addition, we anticipate the proposed loading docks will need to resist lateral earth pressures. Dynamic Earth presents the following preliminary design recommendations for earth retaining structures and/or loading docks.

Soil Parameters and Design Considerations: Proposed retaining walls that are free to rotate generally can be designed to resist active earth pressures. Restrained walls and retaining wall corners need to be designed to resist at-rest earth pressures. Backfill soils adjacent to retaining structures should consist of freely draining materials composed primarily of sand and gravel. The soil parameters provided below apply to properly compacted granular fill and backfill placed in a well-drained, level condition and may be used for preliminary design of retaining structures.

SU	MMARY OF	FLATERAL EA	RTH PRESSURE PA	ARAMETERS	
Stratum	Moist Density, γ _{moist} , (pcf)	Internal Friction Angle, Φ (degrees)	Coefficient of Active Earth Pressure (K ₃)	Coefficient of Passive Earth Pressure (K _p)	Cohesion (psf)
Existing Fill Material*	115	28	0.36	2.70	0
Natural Residual Soils (fine- grained)	125	20	0.49	2.04	1,000
Import/ Granular Soil	135	32	0.31	3.25	0

^{*}Should not be used for resistance

The effect of any surcharge loads including construction equipment, traffic, proposed/existing structures and temporary and permanent stockpiles also will need to be included in earth pressure calculations. Dynamic Earth would be pleased to assist with the calculation of lateral earth pressures based on the soil parameters presented herein during the structural design phase.

Retaining walls should be designed so that the combined effect of vertical and horizontal resultant loads and overturning moment does not exceed the maximum allowable soil bearing capacity recommended in this report.

Adequate drainage of water which may collect on the backfill side of the retaining walls should be incorporated into the design and/or hydrostatic pressures should be added to the pressure calculations. A system of perforated drain pipes should be used at the base of the backfill side of the wall structure to collect and remove the water and relieve hydrostatic pressure.

Dynamic Earth recommends that granular soils be used to backfill the proposed subgrade and retaining walls. Clays and silts or soils with a fine fraction with a liquid limit exceeding 40 or a plastic index exceeding 20 should not be used as backfill. Acceptable backfill should be placed in maximum nine-inch loose lifts and compacted to 95 percent of the maximum dry density, within two percent of the optimum moisture content, as determined by ASTM D 1557 (Modified Proctor). A maximum density of 135 pounds per cubic foot should not be exceeded in order to avoid creating excessive lateral pressure on the walls during compaction operations.

Dynamic Earth recommends that backfill directly behind the walls be compacted with light, hand-held compactors. Heavy compactors and grading equipment should not be allowed to operate within a zone measured at a 45-degree angle from the base of the walls during backfilling to avoid developing excessive temporary or long-term lateral soil pressures.

Resistance to sliding should be provided by friction resistance at the base of the retaining structure foundation. For mass concrete on the natural on-site soils, a coefficient of friction against sliding of 0.35 should be used in the design of the retaining structures. Passive earth pressures at the toe of the retaining structure should be neglected in the design.

5.8 Mottling, Groundwater and Soil Permeability

Indicators of seasonal high groundwater (soil mottling) were observed at depths ranging between approximately 1.8 feet and four feet below the ground surface; corresponding to elevations ranging between 114.5 feet and 109.8 feet. Since groundwater was not encountered within the soil profile pit excavations and was relatively deeper within the soil borings performed, the soil mottling encountered may be a perched zone of saturation. However, supplemental testing would need to be performed to evaluate the potential for the mottling to be indicative of a perched zone of saturation. Seepage was observed at one soil profile pit location (SPP-4) at a depth of four feet below the ground surface; corresponding to elevation 115.0 feet. Permeability test results ranged between approximately less than 0.2 inches per hour (iph) and 2.7 iph. A summary of the seasonal high groundwater levels and permeability test results are presented in the following table:

	MOTTLING,	GROUN	DWATER,	AND PE	ERMEABILI	TY TEST	SUMMARY	
		M	ottling	Grou	ndwater	Perme	eability Test	Results
Location	Approximate Surface	Depth	Elemetica	Depth	Elevation	Sample		ability /Hour)
	Elevation	(Feet)	Elevation	(Feet)	Elevation	Depth (Inches)	Replicate A	Replicate B
SPP-1	115.0	4.0	111.0			40	< 0.2	< 0.2
SPP-2	117.8	3.3	114.5	Not Er	countered	36	< 0.2	< 0.2
SPP-3	116.5	2.7	113.8			30 ²	< 0.2	0.3
SPP-4	119.0	Not Er	countered	¹ 4.0	115.0	30 ²	2.7	< 0.2
SPP-5	117.0	3.7	113.3			30	< 0.2	< 0.2
SPP-6	113.5	NI- (F)		NI -4 17-		48		
SPP-7	111.3	Not E	ncountered	Not El	ncountered	70		5T.
SPP-8	111.1	1.8	109.3			19		

¹ Seepage observed at the bottom of existing fill layer.

5.9 Preliminary Seismic and Liquefaction Considerations

The soils are most consistent with a Site Class D defined by the *International Building Code*. Based on the seismic zone and soil profile, liquefaction considerations are preliminarily not expected to have a substantial impact on design.

5.10 Temporary Excavations

The granular portions of the on-site soils encountered during the investigation are consistent with Type C Soil Conditions as defined by 29 CFR Part 1926 (OSHA) which require a maximum unbraced excavation angle of 1.5:1 (horizontal:vertical). Actual conditions encountered during construction should be evaluated by a competent person (as defined by OSHA) to ensure that safe excavation methods and/or shoring and bracing requirements are implemented.

5.11 Supplemental Evaluation and Investigation

Final Design/Supplemental Investigation: Since these preliminary geotechnical investigation activities have been completed during the initial design phase, many critical assumptions or preliminarily details regarding assumed structural loads, existing and proposed elevations, etc. affect the geotechnical analysis. The preliminary considerations presented herein should be considered to help develop the optimum site design and grading, and Dynamic Earth should remain involved during final design. In addition, a portion of the proposed building footprint was

²Permeability rates within the existing fill material are expected to be variable due to the heterogeneous nature of these materials

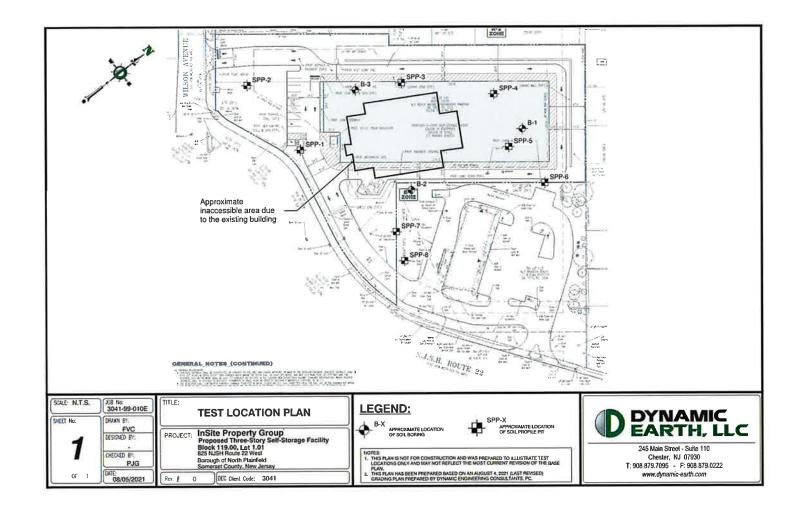
occupied by an existing building at the time of this investigation. Therefore, the conditions below presently inaccessible areas should be evaluated with a supplemental geotechnical investigation following demolition to confirm that the soil conditions are consistent with those encountered during this investigation and/or provide additional geotechnical recommendations, if required.

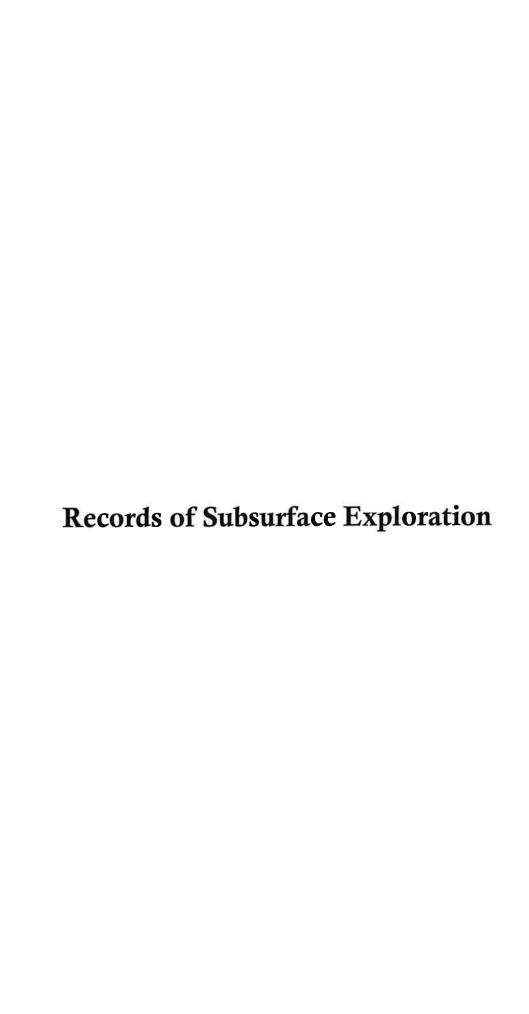
Construction Monitoring and Testing: The recommendations presented herein are contingent on the owner retaining Dynamic Earth to perform the final plan review, supplement geotechnical testing and consultation during construction as described in previous sections of this report. Construction phase consulting will be necessary to verify suitable bearing material below the proposed building foundations and to confirm the suitability of the material for support of the proposed floor slabs and pavements. Monitoring and testing should also be performed to verify that suitable materials are used for controlled fill, and that they are properly placed and compacted over suitable subgrade soils. Testing of fill placement will also be critical to limiting differential settlement.

6.0 GENERAL COMMENTS AND LIMITATIONS

Supplemental recommendations will be required upon finalization of conceptual site plans or if significant changes are made in the characteristics or location of the proposed structures. Dynamic Earth should be included as a consultant to the design team and should be provided final plans for review to confirm these criteria apply or to modify recommendations as necessary.

The recommendations presented herein should be utilized by a qualified engineer in preparing preliminary design concepts and site grading. The engineer should consider these recommendations as minimum physical standards that may be superseded by local and regional building codes and structural considerations. These recommendations are prepared for the use of the client for the specific project detailed and should not be used by any third party. These recommendations are relevant to the preliminary design phase and should not be substituted for construction specifications.


The possibility exists that conditions between test locations may differ from those at specific test pit locations, and conditions may not be as anticipated by the designers or contractors. In addition, the construction process may itself alter soil conditions. Therefore, Dynamic Earth Geotechnical Engineers or their representatives should observe and document the final construction procedures used and the conditions encountered, as well as conduct testing and inspection to ensure the design criteria are met or recommendations to address deviations are implemented.


Dynamic Earth assumes that a qualified contractor will be employed to perform the construction work, and that the contractor will be required to exercise care to ensure all excavations are performed in accordance with applicable regulations and good practice. Particular attention should be paid to avoiding damaging or undermining adjacent properties and maintaining slope stability.

The exploration and analysis of the foundation conditions reported herein are presented to form a reasonable basis for preliminary site evaluation. The recommendations submitted for the proposed construction are based on the available soil information and the preliminary design details furnished or assumed. Deviations from the noted subsurface conditions encountered during construction should be brought to the attention of the geotechnical engineer.

The geotechnical engineer warrants that the findings, recommendations, specifications, or professional advice contained herein have been promulgated after being prepared in accordance with generally accepted professional engineering practice in the fields of foundation engineering, soil mechanics, and engineering geology. No other warranties are implied or expressed.

Boring No : B-1

Page 1 of 2

Proj. No.: 3041-99-010E Proposed Self Storage Facility InSite Property Group Client: 825 NJSH Route 22 West, North Plainfield, Somerset County, New Jersey ocation: Additional EI. Depth EI. Depth 07-15-2021 Date Started: **Groundwater Data** Groundwater Date Completed: 07-15-2021 (ft) (ft) (ft) (ft) 33.6 feet Data Termination Depth: While Drilling: NE J. Scardigno Proposed Building Logged by: Proposed Location: 90.5 FMW At Completion: 29.0 Contractor: Drill/Test Method: HSA/SPT CME 55 Rig Type: Hammer Type: Auto Sample Information Strata DESCRIPTION OF MATERIALS Blows per 6" or drill time (mm:ss) Depth Remarks Depth Rec ROD (Classification) Number Ν Туре (in) (Feet) Brown and red silt, little medium to fine gravel, little coarse to fine sand, trace debris (concrete) soft, moist (FILL) 2 Qp = 0.75 tsf 0.0-2.0 S-1 SS 10 4 2 2 Brown silt, some medium to fine gravel, little coarse to fine sand, trace FILL debris (asphalt), moist (FILL) Qp = 0.75 tsf5 SS 12 2.0-4.0 S-2 3 8 Qp = 0.5 tsfBrown silt, trace medium to fine gravel, little coarse to fine sand, moist 2 2 Qp = 3.0 tsf 4.0-6.0 S-3 SS 16 10 Gray and brown silt, stiff, moist (ML) 8 13 Gray and brown silt, little coarse to fine sand, moist, very stiff (ML) 5 4 $Q_D = 3.5 \text{ tsf}$ 9 SS 6.0-8.0 5-4 24 5 6 Gray and brown silt, some medium to fine gravel, little coarse to fine sand, moist, stiff (ML) 5 5 Qp = 2.5 tsf 8.0-10.0 S-5 SS 10 13 8 10 Reddish brown silt, some medium to fine gravel, little coarse to fine sand, moist, very stiff (ML) $\,$ 12 20 Qp = 2.5 tsf24 45 10.0-12.0 S-6 SS 25 17 Reddish brown silt, little medium to fine gravel, little coarse to fine 45 33 Residual Soils sand, moist, hard (ML) 95/8 14.0-15.2 S-7 SS 12 50/2 Brown silt, some medium to fine gravel, little coarse to fine sand, moist, hard (ML) 33 44 Qp = 4.0 tsf 58 19.0-21.0 S-8 SS 10 20 25 20 Brown coarse to fine gravel (shale fragments), little coarse to fine sand, moist, hard (GM) 38 50/3 Weathered S-9 SS 15 50/3 24.0-24.8

Boring No : B-1

Page 2 of 2

3041-99-010E Proj. No.: Proposed Self Storage Facility 825 NJSH Route 22 West, North Plainfield, Somerset County, New Jersey Client: InSite Property Group Location: Additional Groundwater EI. Date Started: 07-15-2021 Depth EI. 119.5 feet Surface Elevation: **Groundwater Data** (ft) 07-15-2021 (ft) (ft) 33.6 feet Date Completed: (ft) Data Termination Depth: Proposed Building While Drilling: Proposed Location: Logged by: J. Scardigno NE 90.5 Drill/Test Method: HSA/SPT Contractor: FMW At Completion: 29.0 CME 55 Rig Type: Hammer Type: Auto Sample Information Depth (ft) DESCRIPTION OF MATERIALS (Classification) Strata Blows per 6" or drill time (mm:ss) Remarks RQD Depth (Feet) Rec N Number Туре (in) Weathered As above (GM) 29 50/2 S-10 50/2 29,0-29.7 As above (GM) 36 50/1 50/1 12 33.0-33.6 \$-11 SS Boring B-1 was terminated at approximately 33.6 feet below the ground surface.

Boring No: B-2

Page 1 of 1

Proj. No.: 3041-99-010E Proposed Self Storage Facility Project: Client: InSite Property Group 825 NJSH Route 22 West, North Plainfield, Somerset County, New Jersey Location: Additional EI. Depth EI. Depth 07-15-2021 Surface Elevation: Groundwater **Groundwater Data** 07-15-2021 (ft) (ft) (ft) (ft) Date Completed: Termination Depth: 12.5 feet Data While Drilling: NE Proposed Location: Proposed Building Logged by: J. Scardigno NE FMW At Completion: Drill/Test Method: **HSA/SPT** Contractor: CME 55 Rig Type: Hammer Type: Auto Sample Information DESCRIPTION OF MATERIALS Deplh (ft) Blows per 6" or drill lime (mm:ss) Strata Remarks RQD Depth N Number Type (Feet) (in) Brown silt, some coarse to fine gravel, moist (FILL) արտերությունակարեր կարությունակարեր հարաքարակարեր հայեսիայիայեր հայեսիայիայեր հայեսիայիայիայիայեր հայեսիայիայիա 16 SS 18 57 FILL S-1 0.0 - 2.09 32 Brown and gray silt, some medium to fine gravel, some coarse to fine sand, moist, stiff (ML) 8 8 Qp = 1.5 tsf 16 2.0-4.0 \$-2 SS 7 10 8 Brown silt, some coarse to fine gravel, little coarse to fine sand, stiff (ML) 8 9 Qp = 2.0 tsf 18 Residual Soils SS 18 S-3 4.0-6.0 9 10 Brown and orange clayey silt, little coarse to fine sand, moist, stiff (ML) 7 10 Qp = 2.0 tsf6.0-8.0 S-4 SS 12 20 12 10 Brown and red coarse to fine gravel (shale fragments), some clayey silt, little coarse to fine sand, very moist, hard (GM) 50/3 S-5 SS 12 _ 50/3 8,0-8,3 Weathered As above (GM) Rock 46 23 52 10.0-11.9 S-6 SS 12 29 50/5 50/2 As above (GM) 12.0-12.5 S-7 SS 50/2 Auger refusal at Boring B-2 encountered refusal at 12.5 feet below the ground surface. 12.5 feet

Boring No: B-3

Page 1 of 2

Proj. No.: 3041-99-010E Proposed Self Storage Facility Client: InSite Property Group 825 NJSH Route 22 West, North Plainfield, Somerset County, New Jersey Additional EI. Depth EI. Depth 07-15-2021 Date Started: **Groundwater Data** Groundwater Date Completed: 07-15-2021 (ft) (ft) (ft) (ft) 33.6 feet Termination Depth: Data Logged by: While Drilling: NE J. Scardigno Proposed Building Proposed Location: FMW At Completion: 26.0 89.5 HSA/SPT Contractor: Drill/Test Method: Rig Type: **CME 55** Hammer Type: Auto Sample Information Depth Strata DESCRIPTION OF MATERIALS Blows per 6" or drill time (mm:ss) Remarks Depth (Feet) Rec ROD (Classification) Number Ν Туре (in) % 4 inches of asphalt with no apparent subbase material Surface Cover 18 Brown silt, little coarse to fine sand, little fine gravel, moist (FILL) ումյուկումում իր և ու իր և ու իր և ու իր և ու իր և ու իր և ու եր և ու իր և ու իր և ու և ու և ու և ու և ու և ու 0.0-2.0 S-1 SS 18 10 6 4 FILL As above (FILL) 3 41 Qp = 2.5 tsf 2.0-4.0 S-2 SS 18 Reddish brown silt, little fine sand, moist, stiff (ML) 37 25 Reddish brown clayey silt, trace fine sand, moist (ML) 7 5 Qp = 1.5 tsf 4.0-6.0 S-3 SS 16 10 5 11 As above (ML) 5 Qp = 1.5 tsfSS 11 6.0-8.0 S-4 14 6 8 As above (ML) 6 8 Qp = 1.5 tsf 8.0-10.0 S-5 SS 14 14 6 10 Orange and brown silt, little coarse to fine sand, trace medium to fine gravel, moist, stiff (ML) 13 15 Residual Soils Qp = 3.0 tsf10.0-12.0 SS 18 32 S-6 17 17 Reddish brown silt, little coarse to fine sand, trace coarse to fine gravel, moist, stiff (ML) 17 6 35 Qp = 3.0 tsf SS 14.0-16,0 S-7 18 19 Reddish brown coarse to fine gravel (shale fragments), little silt, little 61 35 coarse to fine sand, moist, very dense (GM) 19.0-20.3 SS 15 111/9 50/3 -20 Weathered Rock 50/4 -As above (GM) 24.0-24.3 SS 6 -50/4

Boring No: B-3

Page 2 of 2

3041-99-010E Proj. No.: Proposed Self Storage Facility 825 NJSH Route 22 West, North Plainfield, Somerset County, New Jersey Client: InSite Property Group Location: Additional Groundwater Date Started: 07-15-2021 Depth EI. EI. 115.5 feet Surface Elevation: **Groundwater Data** (ft) 07-15-2021 (ft) (ft) Termination Depth: 33,6 feet Date Completed: (ft) Data While Drilling: Proposed Location: Proposed Building Logged by: J. Scardigno NE 89.5 Drill/Test Method: HSA/SPT Contractor: FMW At Completion: 26.0 Rig Type: CME 55 Hammer Type: Auto Sample Information Depth (ft) DESCRIPTION OF MATERIALS (Classification) Strata Blows per 6" or drill time (mm:ss) Remarks RQD Depth (Feet) Ν Number Туре (in) 50/5 -Weathered As above (GM) 29.0-29.4 S-10 SS 6 50/5 Rock As above (GM) 40 50/1 50/1 18 33.0-33.6 S-11 SS Boring B-3 encountered refusal at approximately 33.6 feet below the ground surface.

	special hard bloom	faction .										tial exercit								=	_		
na Dra	pri se chen Para del 20 les	1150 Con States	Courty.	New Jersey		Frage		Contract Con	52.2		Det	indita Property Grant. Dryst			т.				Comp	- C-	egarlis		
ningips ()	impero (RC):	TO DOM COMMON	Lapped by:			Scardigro		chir.	- new						-0-							_	_
and the same	Viscal Deservation		Combonitor:			Carrier Co.		Crossdayer	_			44			inte		Phys Charl (10 AM	7/1 restting 4	75				
-			- Str. Lane	_	John	Owere 55g	r t	STRUCTURE	_			COMSSTERCY		BOLDA				HOTTLING		,	SAMPLING	\neg	_
TH (PR)	COLOR	SANL TEXTURE		COARSE FRA	CHIENTS (%)				lizm	WATER	Resistance to	Shekiren	Pleadelty	Distinctives	Topography	коота	Guantity	Ma	Covernal	2100	Suppl det	in.	LAB
_				- 1111/17	20072		- Chapter	Cirolin	N/A		- Barrer -	LEADING		-	1444			_			841	_	_
	(constant)	LOAM	OWNER	07.372		EDUDOS	GRANULAN	WEAK	FREE	MODELL	FRIADLE	MONETHON	HOPPLASTIC	DEMAF	БРООТИ	BHT PZB% FBEE	вом€				1		
_			((6)	1000000	•	*	SPHEROOM.	1500														+	_
	Brown (10YR 4G)	LOVM	pane.	2	1	*	SUBMICEELAR	win	ree	wost	FRAME	MOMBTICKY	HONFLARTE	OLEM 42 P	EMOOPN	PEW (PS-WAX) FINE	юе			uas .	Q:	54	
4			CRAVEL	- 550	- 65	BOULDERS	BLOCKY	CEIII	1122													+	_
-a	Brown (1878 SCI)	EE, TV CLAT LOAN	(6)		*	(0)	BUBANGURAR	MODERATE	THE	H037	FRANCE	ROMETTICKY	MORPLASTIC	DIM-SP	EM001W	nest .	HOME			BAG Fluide		EAS Fri	:
+			ones	connucs	11041	sources.														T		1	
"	Reddfull Brown (SYR SM)	SAMOY LOAM	i.				SURMICULAR RLOCKY	WEAK	FINE	MOLET	PRIMILE	BOMSTICKY	MONPLASTIC	C(E44-421)	EMOORN	•	PEW 2%	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	витист	840	60	1.1	
7			grants.	course	tions	BOADE45						SLIGHTLY	BUGHTLY										
-120	Arddan Brunn (SYR S4)	BILTY CLAY			•	- 61	BLOCKY	MODERATE	inc	MOST.	BOFT	STICKY	PLASTIC			rost.	resc			BAG	100		
																						_	
																						- 1	

Project.	Proposed Saff Storag	facility										Project No.:	that exercise	
Surface Circ		11/A 120	Date Standard	mmert Charty.	Now Jersey		FERN		Guerr	es des		Chert	Bright Projects Daniel Dry 0	
target La		SWM		Lapped by Contractor			Survivos Survivos Survivos		Creekings.				¥ 34	
Method				No. Tops		AP.	Desire N/E		STRUCTURE		WATER		COMSTRUCT	
DEPTH DN	COLOR	800.	TENTURE		COARSE FILE	ZMERTS (%)		Dept	Grade	Cm .	CONLEHL	Personal to	Dickinson	Pleaticity
				OWAL	COMMEN	370743	EDULOGNS							
64	(107R-63)		FORM	(4)				GRAING AN EPHERODIAL	MA	FINE	TERM	FRIABLE	KOMSTICKY	AICHPLASTE
				GAMEL.	COHNES	\$1048	NOADERS							
6-23	(197R 40)		LOAM		4			SUBANGULAR BLOCKY	WEAK	end	w051	FRABLE	NOMETICAL	HOMPLASTIC
_		_		CHANEL	CONDUCTO	ITUES	anyunces			_				
20.40	Brown		STITLOM					ľ.			Water	FRANKE	MONSTRON	HOMPLANTS:

SUBMERICAN WEAK

me

.

Soil Profile PR: <u>8PP-2</u> Page 1 of 1

> 8-2 A+0.25M T-1 8+0.35M

ы

110

LAS RESERVE

Printer Committee of the

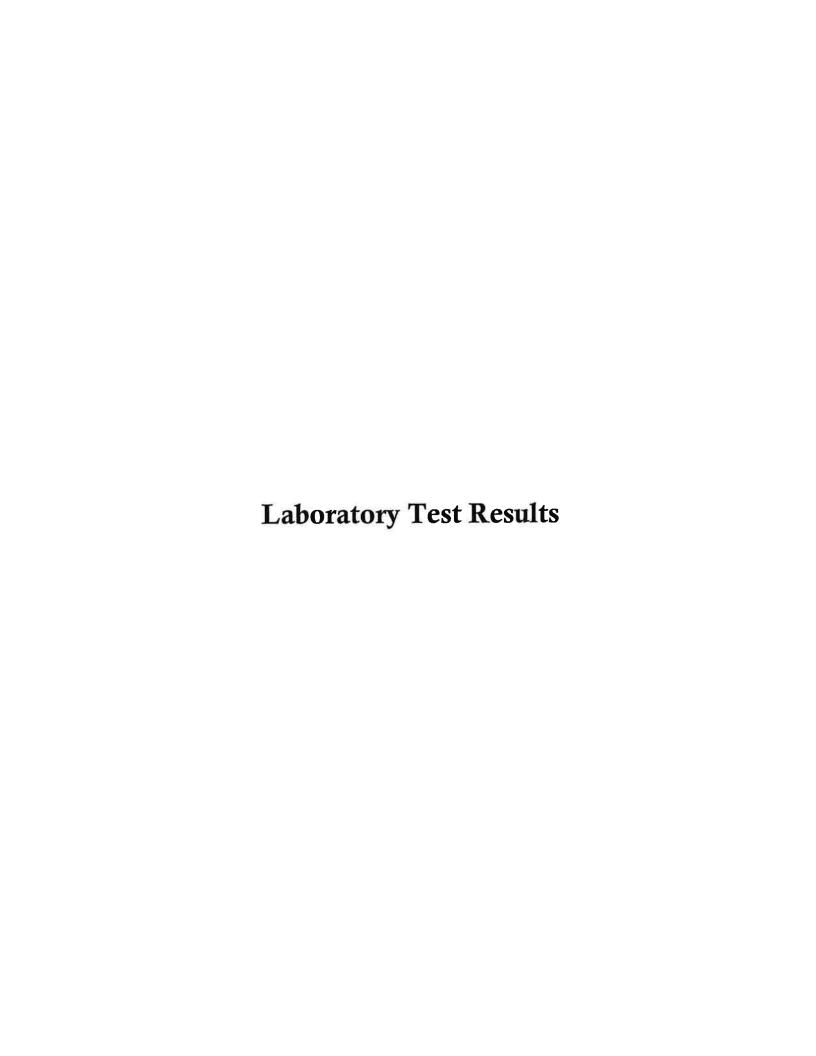
PEW 2% MEDICAL CONTINU

CMFF (20°54 FINE)

SARDY CLAY LOAM

Paradama Brown

**	fragment bed bles	ga fasikiy									Project No. 1	Hat As a set will be from the Server				_	_		_		_	_	_	_
eleie Dies	ett auto Panie III. eter (fl)	116.5 Saw Started	homest Courts	Ara.bino		Marin:		-	magy Daring			han benedikena	-		13					Committee	or Comm			
-	Depth (NII)	12 Den Conststed	Lappette	_		HISSEY SORROW		hipsp		_		Ü.						-22	AU 277					
adpended Lin	Vegal Operation	Seran	Contractor			around .		Gundager				N.			mr	_	-	Gentlement	tog 15-45 to	works.	Pili Pall	mg /2" - 1	н	
Warrant .			**************************************	_	100	5—19 ₁	_	Metro				2.7 COMMISTERCY		8004		_	-		MATTLEO		-	SAMPLING		
CPTH DIO	COLOR	SOL TEXTURE		COARDE FRA	GMENTS (%)			STRUCTURE		CONTENT	Percentage to					поста				-	_	S. Taranal I	_	LABRO
naws.							Омри	Grade	(Em	-	Property	Distinue	Plenticity	Distinctrores	Торирарду		_	Country	Gizo	Camirant	Type	Oupon dea	Ma.	
_			CHAVE	COMMES	\$1043	BENCHMAN																	- 1	
0-11	Brown (1879, 4/3)	SANTLEY LOAD	м		*	•	GRANNELAN STRERIOOAL	WEAK	MEDIUM	wost	FRIABLE	MOREON	HONEUSTE	COMME	SWOOTH	CERN (20°S	FINE	BOME						
			SAME	CORNES	STONES:	BOLLOFFE																		
ti-m	Brown (197R 40)	GRAVELLY LOSS	(40	-	¥	3.00	SUBANGULAR BLOCKY	WEAK	марим	MORET	FIGURE	MOMETICKY	POPLATE	COMME	ewoom	CM H (SUP). MAX)	FIRE	BHOME			EAG TURK	70	\$41 Tel	8-1
			SW051	condita	170463	BOLLOOKS																		
22-43	Reddish Breeze. (STR 544)	ELT	. •				BLOCKY	WEAK	METERE	возт	SOFT	ьомпон	HOMPLASTIC	CTENN-47.L.	змоотн	HOKE		HNY >2FS	>LDANSE CDANSE	PECHNEJI	BAG	38	\$-Z	
			GENT).	CORRUES	X10469	90(40649																		
es-ra	Reddish Brown (SYR Me)	SARCYLOR			*		SUBMICIE AN BLOCKY	MODERATE	Price	MONIT	FRAME	HOMETICALY	MONTANTE	AMPGIPT +11	EMOOTH	NCME.		MONE			840	44	E4	
			GANTE	coences	STONES	BOADONS										1								
12-144	Elirk Vollewinis Strong (1877K 246)	SETYCLAYLO		(4)			SUBMICULAR BLOCKY	BRIDERATE	Falce	skczert	FRABLE	SLIGHTLY	ELKANTLY PLASTIC			test		rem ass	FINE 400.00	DISTRICT	BAG	130	4	
																							-	


M. Figer	in a few teams I	Marc Brancott	(Neth Fredrik ber	errent Coverty.	Now Atract							Chert	TO COMPANY STATE												
ertaus Diesi promotion (September (PS)	1762	Date Standard Date Completed		_		risat risat		Grand-	der Chin			m)		_	TITLE TO		-			Creative	ar C-			
Disease of London	Visual Dosenatico	2936		Contractor:			ameca		Solding.				ů.			- 4			*******	tapped metal at	Tap bed				
Named .				Ris Terr	_	244	Ders Gy.	-	STRUCTURE	_			CONSISTERCY		BOUN	DARY				MOTTLING			LAWPLING	,]	
CPTH (N	COLOR	500.	TEXTURE		COARSE FRA	COMERCES (FAI		Biogra	Grade	Size .	CONTENT	Revenue to Busine	Tarki-	Planticity	Dietinctrere	Topography	ROOTE		Casality	Mm	Covinsi	Type	Depth (M)	Ro.	LAB RESIL
-		_		OWAS	CODMAS	STONES	BOADERS																		
0-6	(107R-4d)		FORM		(#-	,	•	GRAMMULAN SPIEJOURAL	WODERATE	red.	MONET	PARE	HONSTHONY	MONPLASTIC	Ment et	******	CHT (20% MAX)	FIRE	ROME						
-				GENEL	COMMITS.	TRMS	BOADERS	SUBANGULAR SUGGRY														П			
643	Brown (10YR 4/3)		LOAM			10	*	SUBANGULAR SLOCKY	MODERATE	PINC	MCMST	FRUSLE	HONSTHORY	NONPLASTIC	ADMINT 40"	SHOOM	COAN (20%. MAX)	First	MORE			BAG TUBBE	3	8-1 T-1	A = 2.7 dh II 40.2 lh
_				OKAVE:	coentr	attecs	BOXLOCKS																	П	
44-95	(100 ALG)		22.17 CLAT LOSS		(4)	,	45	BLOCKY	MODERATE	MEDIA	MCEST	PRACE	SLIGHTLY	BLASTIC PLASTIC	atster.	BHOOM	HOME		HOME			виа	•	B-2	
	Queta Revision			GRAVEL	(4) # 4)				10.000.0																
85-122	Stowe (STR 349)	GRAVELLY	Liber	10	10		8	SLEANGULAR	BICKNERATE	me	77.04	FRIABLE	HOMSTICKY	HIGHPLAITTE			MONE		NOME.			BAG	110	842	
-																									

	named San Street	no Facility					_						mat exerte											
Re Cloud	TI MARKET PROMPER SE		Des Darket	arrest Courts	ton press	_	19527		_	_	_	Clark	hills fracety from June	_		D.				-				
0 مخصد		120 SP(14	Date Company				HANDY.			(Tentro Dans					_			_					_	
oved Loc	Alasi Otsevalos	SMM		Lapped by: Contractor:			ermine.		Committee of				*			- F		15 to 15 to 16 to	17/1) multiling 44	* 74°				
	Aud Utservalio			- Statute	_	,lofe	Dame 50g		Marting		_	r	Ø.		BOUN				MOTTLING			SAM PLING	\neg	
etiw (IPA)	COLOR	400.	TEXTURE		COARGE PILA	CERTA (S)			STRUCTURE		WATER CONTENT		COMMERTERCY				ROUTE						-	LAB RES
1								Eheps	Grade	E/an	CONTENT	Resistance to Registra	(Mckinson	Pleaticity	Distinctness	(chellalp)		Chescolling	Bits	Correct	type	Set of	-	
0-44	(107F 447)		rom	e e	emmas	6	#DULDERS	BUBANGULAR BLOCKY	BODERATE	FME	WONER	FRAME	NORSTRAY	MONPLAKTIC	CITM-01.	SWOOTH	CHON (CHIP'S FROME BLACK)	ю.			BAG FURE	м	\$41 T-1	A-#/
\dashv				GRAVEL	CORPLES	STONES	BOULDERS					<u> </u>									П		7	
4-74	Brown (TOTR \$21)		SETY CLAY LLAW			•		SUMANGLE AR SLOCKT	MODERATE	MEDIUM	watt	RMU	BLICKY	BLIGHTLY PLASTIC	CIEM-43"	swooth	MONE	FEW 2%	#\$0101 608-1948	DETTI-ACT	BAG	-	84	
7				CHANG.	COBBLES	11041	BOLADONS														П		7	
-144	(Lark Reddish Briters (STR \$41)	CHAVELLY	LOAM	296	25442	*	98	SEMANGERAR BLOCKY	MODERATE	FINE	MORSET	FRANK	MONSTICKY	MUNPLASTIE			wast	KME			940	129	147	
																_								
+									_														1	

	operate had bloom	1135 Con Process 140 Day Constant									Project had.	management milita Property Group									_	
ace Dire	ine (A):	1135 Code Started	mirror Charles	Non-Arrans		rup.		Gunn	one then		Charles	Si, pair			u u				Grand-ste C	-		
alastics C	soth (It):	10.0 Desired	Laggeri by	_		Scardigro		-				Mr.										
applica.	head Observation		Contractor			STOCK OF THE PERSONS ASSESSMENT		Complete				M		_			-					
CHI.			- Ma Tata	_	John	Description	_	Mading		_		COMMINTENCY		-	DARY.		1	MOTTLING		DANTA	o T	
TH 2NI	COLOR	SOOL TEXTURE		COARSE FRO	QMENTS (%)		Brapa	arrescruse Grade	Na	RSTAW	Forestance to Residen	Dictions	Planticity	Dispectment	Coprography	ROOTE	Carectory		Coreted Typ	_	l ma	LAB RES
-			OSMS.	CORRAS	19941	ichazens					Replace						1			-		
**	Brown (forR 4/3)	LOAM	8		*	•	SIMARGULAR BLOCKY	WEAK	res	MORET	FRIABLE	HOMETHOMY	NOMPLASTE	CITAR-037	виссти	Chiri (20%, Find) MAX) Find	HOME					
7			GOANES.	C000X3	\$1045	*DARKERS																
1-02	(10YR 4/1)	LOM	ŧ	(a)		•	SUBANCILAR BLOCKY	wtan	*	wost	FRAME	MOMETICAY	MOMPLASTIC	CTW 43.	awoone	CASS (ZUTS. FIRST	HOME			u	3-1	
			CRAVEL	COMMES	STONES	BOULDERS															П	
-126	Brown (SYR 544)	MATT CLAT LOS	MATY CLAY LOME STATE OF THE STA		SUSANGULAR BLOCKY	MODERATE	rec .	sost	sort	SEJOHTLY STREET	PLASTIC			NOME	MINE		Type Type	4	8+2 (-)			
1																						
1																						
																					Ш	

ent i	pi ngia fasi biyan	Facility Test State Control of State Con	morest Electro	to a Jersey							Client	port en erset India Property Symp		_	n		-						=	=
Case Elece	ten (F):	177.3 Outs Startes		_		F4524		G-mi-	ear Own			Prof.					_			Complex	-	_	_	
		SWI	Controctor)ceaps		Constant				W.												
fred Settled	Vacal Observation		- Palier		Jan	Done Sile		Nation				4			,	_	_				_	_	-	
PT NO.	COLUM	BOIL TEXTURE		COARSE FE				STELECTURE		WATER		COMBESTERCY		BDUSA		ROUTE			MOTTLES	_		EMPENIG.	_	LAB
The State	сопи	equ, texture:	-	CONCEPE	- LENG (E)		Ompo	Grade	(time	COMITENT	Forgraphics to Receive	Elizabeta	Pleaticity	Distinctive	Topography			Occopility	Nav	Commit	Tains	det.	m.	_
_			GOLES.	COMMENS	\$10163	BOADUS																		
	Brown (1077R-947)	LOAM	(4)	5.90	•	⊙• 50	SURANGULAR BLOCKY	-	FOR	WD17	front	MOMETTERY	HONFLASTIC	CITAL ST.	SMOOTH	Carri (20% MAX)	FINE	1046						
コ			GMHEL	COMMUNE	\$1043	MONTERE																		
6-01	Brown. (18TR 4/3)	LOAD	*	•	•		NAMES OF STREET	WEAK	PARE	MOIST	FRASL	NOMETICALLA	NONPLASTIC	CLEAN 43.P*	ежооти	CERT CAPA.	nec	HOME			aug .	11	M	
\neg			CHANG	counts	attrics.	BOXXXXX											- 1							
-144	Rechtlish Eryant (SYR SAI)	SRLTY CLAY LOAD	6	•	*	(42)	BUBANGULAR BLOCKY	BOXERATE	FME	HOST	SOFT	MONSTLERY	MONPLASTIC			NO4		ios			BAG TURNS	"	EA2 EA	
																						1	1	
-																					-	+	+	_

	Property but the	age Facility											median							_			_
other Date Design	II and the A	Prof. Property	Test Parties	met Creek.	ter imm	-	15-21						indite Departy Drawn. Rept.			- 4			Cont	-			
mater !	Desires (TE	12.0	120 SWH		735-73				Greate	PRINT LINEA.	- 5												
parties.	allen.	SWII		Castracter: Carrocce				Screens and										Combination 10 Following 21" - 21"					
Test.	Visual Dissevantus			Mig. Face: John Despt 63g				Number .								INSTITUTES SAMPLING							
		SOS. TEXTURE		COARSE PRACMERTS (%)				STRUCTURE		WATER	CORSISTENCY			BOUNDARY		ROUTS	INCTTLING			Contract to the contract of th		LAS RESE	
CALL DAY	COLDR	SOEL TEXTURE		COMPRET PRACTICE (S)			Shape	Octable	8/20	CONTENT	Personal Dictions Planticity		Distinctores	Topegraphy		Onsolity	Biza Commit	al Type	Depth.	**			
_				CHANG.	COUNTS	10000	EDMOCRE												77				
н	Brown (107R-4/3)		LOVE			•		BUBANGULAR BLOCKY	WEAK	FINE	worl	FRAMLE	MORSTHORY	HOMPLASTIC	ABRUPT «1"	SHOOTH	CMR (20% PINE	HOVE		840	•	\$-1	
-				GANG	COMMUNE	170483	BOLLDERE		STRUCTURBLESS											П			
-17	Brown (10YR 5/3)	CERTILITY	8440	line:		*	100	BUIGLE GRAM			MODELT	FOORE	souther	MONOPLASTIC	ADRIUM ANT	вироги	MONTE	MONE		BAG	·a	8-2	
\dashv				owie.	conn.rz	17043	80042049	1												1		П	
17-21	Raddish Brown (SYR 544)		LOMM		, e	*	ŧ.	ELBANGERAR BLOCKY	MODERATE	FINE	BOUT	FRANCE	BURSTICKY	HOMPLASTIC	ABRUPT 41"	\$1000t#	PCME	HOME		BAG TURE	19	M	
\neg				OWNER	COUNTS	11043	BOADES													7		П	
ar	Reddon Brown (SYR 646)		SANDYLOM		*	*	•	SUBAHOLILAN	MODERATE	me	MONET	eman.E	MONETICAY	MONOPLANTIC	CLEAR-CLF	EMOCTH	ROSE	CMH 2%-38%	SER-15ER	CT BAG	24	"	
				gents.	C008111	11045	BOLLEGES															П	
-144	Reddish Brown (SYR 846)		SANOT LOAM	AC.	(4)		•:	SIERAWGULAR BLOCKY	MODERATE	FIME	MCREST	FRAGLE	NONSTRON	BUGHTLY PLASTIC			MORE	acret.		BAG	тэ	*	
															-					+		Н	_
								1															

__ Other - Specify ___

Job Number: 3041-99-010E Project: Proposed Self-Storage Facility Sample ID: Boring/Test Pit No.: SPP-1 Sample No.: T-1 Depth: Client: InSite Property Group Lab Tech: PH Borough of North Plainfield BLOCK 119 LOT 1.01 MUNICIPALITY 7/15/2021 T-1___Replicate (letter) Α Date Collected 1. Test Number __ Test in Native Soil-Indicate Depth 2. Material Tested: 3. Type of Sample: Undisturbed Disturbed Inside Radius of Sample Tube, R, in cm 4. Sample Dimensions: Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 345.503 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. Yes, Indicate Internal Radius, cm. N/A 9. Standpipe Used: x No 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 11. Rate of Water Level Drop (Add additional lines if needed): Length of Test Time, Start of Test Time End of Test Interval T2 Interval, T, Minutes Interval, T1 240 240 240 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ 240.0 12. Calculation of Permeability: K0 K= < 0.2 Classification: 13. Defects in the Sample (Check appropriate items): x NONE Soil/Tube Contact _____Large Gravel _____ Large Roots ___ Dry Soil ______Smearing ______Compaction

Job Number: 3041-99-010E **Tube Permeameter Test Data** Project: Proposed Self-Storage Facility Sample ID: Boring/Test Pit No.: SPP-1 Sample No.: Client: InSite Property Group T-1 Depth: Lab Tech: PH Borough of North Plainfield BLOCK 119 _ LOT 1.01 MUNICIPALITY T-1 ___ Replicate (letter) B___ Date Collected 7/15/2021 1. Test Number __ Test in Native Soil-Indicate Depth Fill 2. Material Tested: 3. Type of Sample: x Undisturbed Disturbed Inside Radius of Sample Tube, R, in cm 4. Sample Dimensions: Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams N/A 345.503 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. Yes, Indicate Internal Radius, cm. N/A 9. Standpipe Used: No 10. Height of Water Level Above Rim of Test Basin, in inches: 5.00 At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 240 240 240 12. Calculation of Permeability: K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ 240.0 Classification: K0 K = < 0.2 13. Defects in the Sample (Check appropriate items):

Soil/Tube Contact _____Large Gravel _____Large Roots

__ Dry Soil _____Smearing _____ Compaction

x NONE

____ Other - Specify __

Job Number: 3041-99-010E

Project: Proposed Self-Storage Facility Client: InSite Property Group Sample ID: Boring/Test Pit No.: SPP-2 T-1 Depth: 36" Sample No.: Lab Tech: PH Borough of North Plainfield 1.01 MUNICIPALITY BLOCK 119 LOT Date Collected 7/15/2021 1. Test Number T-1 Replicate (letter) Α __ Test in Native Soil-Indicate Depth Fill 2. Material Tested: Disturbed 3. Type of Sample: __ Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams N/A 345.503 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 9. Standpipe Used: Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T. Minutes 240 240 240 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 12. Calculation of Permeability: 240.0 Classification: K0 K= < 0.2 13. Defects in the Sample (Check appropriate items): x NONE Soil/Tube Contact ____Large Gravel _____ Large Roots

Dry Soil _____ Smearing _____ Compaction

__ Other - Specify __

Job Number: 3041-99-010E
Project: Proposed Self-Storage Facility
Client: InSite Property Group

Sample ID: Boring/Test Pit No	.: SPP-2 Sample No.:	T-1Depth:	36"	Client: InSite Property Group Lab Tech: PH
MUNICIPALITY Borough	of North Plainfield BLOCK	119LOT	1.01	
1. Test Number T-1	Replicate (letter)B	Date Collected	7/15/2021	
2. Material Tested:	Fill x Test in N	Native Soil-Indicate Depti	h	
3. Type of Sample: x_	Undisturbed	Disturbed		
4. Sample Dimensions:	Inside Radius of Sample Tube, Length of Sample, L, in inches	R, in cm 3.8 3.00		
5. Bulk Density Determination (Di	sturbed Samples Only): N/A			
6. Sample Weight (Wt. Tube Con	taining Sample-Wt. of Empty Tube), grams N/A	-	
7. Sample Volume (L x 2.54 cm./i	nch x 3.14R2), cc.	<u>345.503</u>	•	
8. Bulk Density (Sample Wt./Sam	ple Volume), grams/cc.			
9. Standpipe Used:x	No Yes, Inc	dicate Internal Radius, cr	n. N/A	
10. Height of Water Level Above	Rim of Test Basin, in inches:			
At the Beginning of I At the End of Each	Each Test Interval, H1 5.0 Test Interval, H2 5.0			
11. Rate of Water Level Drop (Ad	d additional lines if needed):			
Time, Start of Tes Interval, T1		th of Test I, T, Minutes		
		240		
		240		
		240		
12. Calculation of Permeability:	K, (in/hr) = 60 min/hr x r2/R2 x l	L(în)/T(min) x ln (H1/H2)	T= <u>240.0</u>	
K =< 0.2	Classification:	ко		
13. Defects in the Sample (Check	c appropriate items):			
xNONE				
Soil/Tube	ContactLarge Gravel _	Large Ro	pots	
Dry Soil	Smearing	Compaction		
Other - S	pecify			

Sample ID:	Boring/Test Pit No	Tube Permeameto	er Test Data mple No.: <u>T-</u>	1Depth:	30"		Proposed Self-Storage Facility InSite Property Group
MUNICIPALIT	Y Borough	of North Plainfield	BLOCK119	9_LOT	1.01		
1. Test Numb	er <u>T-1</u>	Replicate (letter)	ADate 0	Collected	7/15/2021		
2. Material Te	ested: x	Fill	Test in Native So	il-Indicate Dep	th		
Type of Sa	ample: <u>x</u>	Undisturbed	Distur	bed			
4. Sample Di	mensions:	Inside Radius of S Length of Sample,	ample Tube, R, in cm L, in inches	3.8	_		
5. Bulk Densi	ity Determination (Di	sturbed Samples Only	r): N/A				
6. Sample W	eight (Wt. Tube Con	itaining Sample-Wt. of	Empty Tube), grams	N/A	_		
7. Sample Vo	olume (L x 2.54 cm./i	inch x 3.14R2), cc.		345.503	_		
8. Bulk Dens	ity (Sample Wt./Sam	nple Volume), grams/c	c.		_		
9. Standpipe	Used:x	No	Yes, Indicate Int	emal Radius, c	cm. N/A		
10. Height of	Water Level Above	Rim of Test Basin, in	inches:				
	At the Beginning of At the End of Each	Each Test Interval, H1 Test Interval, H2	5.00 5.00				
11. Rate of V	Vater Level Drop (Ad	dd additional lines if ne	eded):				
	Time, Start of Tes Interval, T1	st Time End of Te Interval T2	st Length of Tes Interval, T, Minu				
			240				
			240				
			240				
12. Calculation	on of Permeability:	K, (in/hr) = 60 min	/hr x r2/R2 x L(in)/T(m	in) x ln (H1/H2) T= <u>2</u>	40.0	
	K = < 0.2	Classi	fication: K	0			
13. Defects i	n the Sample (Checl	k appropriate items):					
	xNONE						
	Soil/Tube	e ContactLa	rge Gravel	Large R	Roots		
	Dry Soil	Smearir	ngCo	mpaction			
	Other - S	pecify					

Job Number: 3041-99-010E **Tube Permeameter Test Data** Project: Proposed Self-Storage Facility Client: InSite Property Group Sample ID: Boring/Test Pit No.: SPP-3 Sample No.: T-1 Depth: 30° Lab Tech: PH Borough of North Plainfield 119 LOT 1.01 MUNICIPALITY BLOCK T-1___Replicate (letter) В Date Collected 7/15/2021 1. Test Number Test in Native Soil-Indicate Depth ___, x ___Fill 2. Material Tested: x____Undisturbed Disturbed 3. Type of Sample: 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 2.50 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams N/A 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 287.9192 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 9. Standpipe Used: Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 At the End of Each Test Interval, H2 4.00 11. Rate of Water Level Drop (Add additional lines if needed): Time End of Test Time, Start of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 130 130 130 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 12. Calculation of Permeability: ___130.0 Classification: K1 0.3 13. Defects in the Sample (Check appropriate items):

Soil/Tube Contact _____Large Gravel _____Large Roots

__ Dry Soil _____Smearing _____Compaction

x NONE

__ Other - Specify __

Job Number: 3041-99-010E **Tube Permeameter Test Data** Project: Proposed Self-Storage Facility Client: InSite Property Group Sample ID: Boring/Test Pit No.: SPP-4 Sample No.: T-1 Depth: 30" Lab Tech: PH Borough of North Plainfield 119 LOT 1.01 MUNICIPALITY BLOCK A __ Date Collected 7/15/2021 1. Test Number T-1 Replicate (letter) Test in Native Soil-Indicate Depth x Fill 2. Material Tested: Disturbed x ____ Undisturbed 3. Type of Sample: 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm 3.00 Length of Sample, L, in inches 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams N/A 345.503 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. Yes, Indicate Internal Radius, cm. N/A 9. Standpipe Used: 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 At the End of Each Test Interval, H2 4.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 14 14 15 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 15.0 12. Calculation of Permeability: Classification: К3 K= 2.7 13. Defects in the Sample (Check appropriate items): x NONE

Soil/Tube Contact ____Large Gravel _____Large Roots

______ Dry Soil ______ Smearing ______ Compaction

___ Other - Specify __

Tube Permeameter Test Data Job Number: 3041-99-010E Project: Proposed Self-Storage Facility Client: InSite Property Group Sample ID: Boring/Test Pit No.: SPP-4 T-1 Depth: 30°_ Sample No.: Lab Tech: PH 119 LOT 1.01 MUNICIPALITY Borough of North Plainfield BLOCK 1. Test Number Replicate (letter) В Date Collected 7/15/2021 Fill Test in Native Soil-Indicate Depth 2. Material Tested: Disturbed 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm 3.00 Length of Sample, L, in inches 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams N/A 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 345.503 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. Yes, Indicate Internal Radius, cm. N/A 9. Standpipe Used: 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Length of Test Time End of Test Interval, T, Minutes Interval, T1 Interval T2 240 240 240

240.0

	K =	< 0.2	Classification:	К0
13. Defect	s in the Sar	nple (Check appropriate	items):	
	x	NONE		
		Soil/Tube Contact	Large Gravel	Large Roots
		_ Dry Soil	Smearing	Compaction
		Other - Specify		

12. Calculation of Permeability:

K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$

Job Number: 3041-99-010E

Project:	Proposed Self-Storage Facility
Client:	InSite Property Group

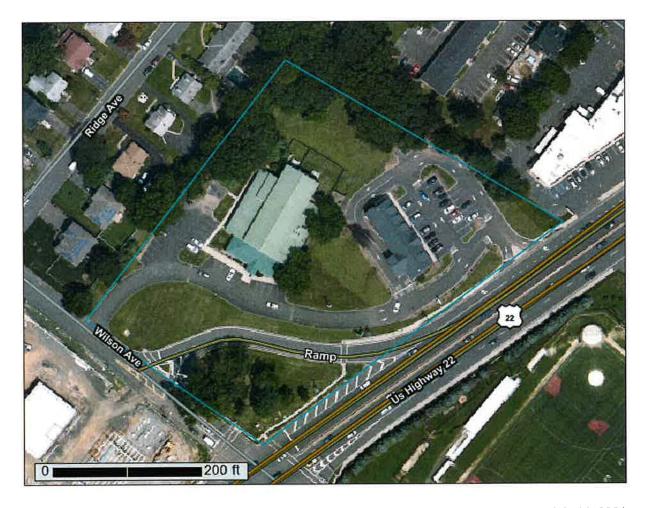
Sample ID:	Boring/Tes	t Pit No.:	SPP-5	Sample	No.:	T-1	_Depth:	30"	Li	ab Tech: PH
MUNICIPALI	TY <u>B</u>	orough of	North Plainfield	d	BLOCK	119	_LOT	1.0		
1. Test Numb	ber _	T-1	Replicate (lett	er) _	Α	_Date Colle	ected	7/15/2021		
2. Material T	ested:		Fill	x	Test in Na	ative Soil-Ir	ndicate Depti	h		
3. Type of Sa	ample: _	х	Undisturbed	-		Disturbed				
4. Sample D	imensions:		Inside Radius Length of San			R, in cm	3.8			
5. Bulk Dens	sity Determina	atíon (Distu	urbed Samples	Only): N	N/A					
6. Sample W	Veight (Wt. Tu	ıbe Contai	ning Sample-V	Vt. of Em	pty Tube),	grams	N/A	-		
7. Sample V	olume (L x 2.	54 cm./inc	h x 3.14R2), co) .			345.503	-		
8. Bulk Dens	sity (Sample \	Vt./Sample	e Volume), gra	ms/cc.				-		
9. Standpipe	e Used: _	х	_No		Yes, Indi	icate Intern	al Radius, cr	n _∈ N/A		
10. Height o	of Water Level	Above Ri	m of Test Basir	n, in inche	9\$:					
			ch Test Interva st Interval, H2	al, H1 .	5.00 5.00					
11. Rate of	Water Level [Prop (Add	additional lines	if neede	d):					
	Tíme, Sta Inter	rt of Test /al, T1	Time End of Interval			h of Test T, Minutes				
					-	240				
						240				
					-	240				
							1			
12. Calculat	tion of Perme	ability:	K, (in/hr) = 60) min/hr x	r2/R2 x L	(in)/T(min)	— x In (H1/H2)	T= _	240.0	
	K =	< 0.2	C	lassificat	tion:	КО				
13. Defects	_	e (Check a	- appropriate item	ns):						
		NONE		•						
			Contact	Large	Gravel		Large Ro	oots		
			Sm							
		other - Spe								_:

Job Number: 3041-99-010E

Tube Permeameter Test Data Project: Proposed Self-Storage Facility Client: InSite Property Group Sample ID: Boring/Test Pit No.: SPP-5 Sample No.: T-1 Depth: Lab Tech: PH Borough of North Plainfield BLOCK 119 __LOT 1.01 MUNICIPALITY T-1 Replicate (letter) В Date Collected 7/15/2021 1. Test Number Test in Native Soil-Indicate Depth Fill 2. Material Tested: 3. Type of Sample: x __ Undisturbed _Disturbed Inside Radius of Sample Tube, R, in cm 4. Sample Dimensions: Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams N/A 345.503 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. Yes, Indicate Internal Radius, cm. N/A 9. Standpipe Used: 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 240 240 240 12. Calculation of Permeability: K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 240.0 Classification: K0 K= < 0.2 13. Defects in the Sample (Check appropriate items): x___NONE

Soil/Tube Contact ____Large Gravel _____ Large Roots

__ Dry Soil _____Smearing _____ Compaction


____ Other - Specify _

NRCS – USDA Custom Soil Resource Report for Somerset County

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Somerset County, New Jersey

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map.	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Somerset County, New Jersey	13
AmdB—Amwell gravelly loam, 2 to 6 percent slopes	13
DunC—Dunellen sandy loam, 8 to 15 percent slopes	14
References	16

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP INFORMATION MAP LEGEND The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) Spoil Area Area of Interest (AOI) Ô Stony Spot Solls Very Stony Spot 0 Warning: Soil Map may not be valid at this scale. Soil Map Unit Polygons \$ Wet Spot Soil Map Unit Lines Enlargement of maps beyond the scale of mapping can cause Other Δ misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of Soil Map Unit Points 1 Special Line Features Special Point Features contrasting soils that could have been shown at a more detailed Water Features Blowoul **(0)** Streams and Canals Borrow Pit X Transportation Please rely on the bar scale on each map sheet for map Clay Spot × measurements. Rails ---Closed Depression \Diamond Interstate Highways Source of Map: Natural Resources Conservation Service × Gravel Pit Web Soil Survey URL: **US Routes** Coordinate System: Web Mercator (EPSG:3857) 2 Gravelly Spot Major Roads 4 Landfill Maps from the Web Soil Survey are based on the Web Mercator Local Roads projection, which preserves direction and shape but distorts ٨ Lava Flow Background distance and area. A projection that preserves area, such as the Marsh or swamp Aerial Photography Albers equal-area conic projection, should be used if more علد accurate calculations of distance or area are required. Mine or Quarry 毋 0 Miscellaneous Water This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Perennial Water 0 Rock Outcrop Soil Survey Area: Somerset County, New Jersey Survey Area Data: Version 18, Jun 1, 2020 Saline Spot ::: Sandy Spot Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Severely Eroded Spot Sinkhole Φ Date(s) aerial images were photographed: Jul 26, 2019—Jul 31, Slide or Slip 3 Sodic Spot The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AmdB	Amwell gravelly loam, 2 to 6 percent slopes	3.0	81.0%
DunC	Dunellen sandy loam, 8 to 15 percent slopes	0.7	19.0%
Totals for Area of Interest		3.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

onsite investigation is needed to define and locate the soils and miscellaneous areas

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Somerset County, New Jersey

AmdB—Amwell gravelly loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 1j50v Elevation: 100 to 2,000 feet

Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F

Frost-free period: 131 to 178 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Amwell and similar soils: 90 percent Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Amwell

Setting

Landform: Valley flats Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loamy colluvium derived from igneous rock

Typical profile

A - 0 to 3 inches: gravelly loam BA - 3 to 14 inches: gravelly loam Bt - 14 to 21 inches: clay loam Bx1 - 21 to 26 inches: loam

Bx2 - 26 to 36 inches: fine sandy loam C1 - 36 to 46 inches: fine sandy loam C2 - 46 to 60 inches: fine sandy loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 18 to 30 inches to fragipan

Drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to

moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 24 to 36 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Low (about 3.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C Hydric soil rating: No

Minor Components

Watchung

Percent of map unit: 10 percent

Landform: Depressions

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope

Down-slope shape: Concave Across-slope shape: Concave

Hydric soil rating: Yes

DunC—Dunellen sandy loam, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: Idqk Elevation: 50 to 2,000 feet

Mean annual precipitation: 30 to 64 inches Mean annual air temperature: 46 to 79 degrees F

Frost-free period: 131 to 178 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Dunellen and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dunellen

Setting

Landform: Outwash plains Down-slope shape: Linear Across-slope shape: Linear

Parent material: Coarse-loamy outwash derived from sandstone

Typical profile

A1 - 0 to 8 inches: sandy loam
A2 - 8 to 14 inches: sandy loam
BA - 14 to 20 inches: sandy loam
Bt - 20 to 31 inches: sandy loam
C - 31 to 42 inches: sandy loam
2C - 42 to 70 inches: loamy sand

Properties and qualities

Slope: 8 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water capacity: Moderate (about 7.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3e

Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Tunkhannock

Percent of map unit: 10 percent

Landform: Kames, outwash terraces, deltas Landform position (three-dimensional): Riser, rise

Down-slope shape: Convex, linear Across-slope shape: Convex, linear

Hydric soil rating: No

Udorthents, dunellen substratum

Percent of map unit: 5 percent Landform: Outwash plains

Landform position (three-dimensional): Lower third of mountainflank

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

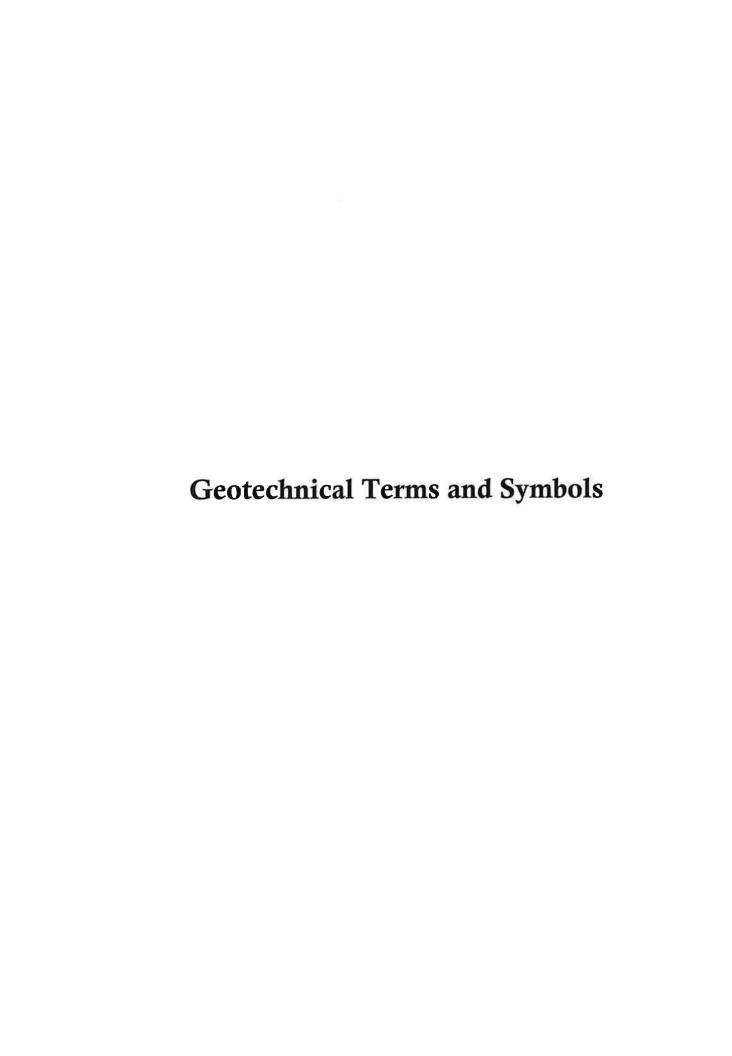
Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.


United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

245 Main Street; Suite 110 Chester, NJ 07930 908-879-9229: Fax 908-879-0222

GEOTECHNICAL TERMS AND SYMBOLS

SAMPLE IDENTIFICATION

The Unified Soil Classification System is used to identify the soil unless otherwise noted.

SOIL PROPERTY SYMBOLS

Standard Penetration Value: Blows per ft. or a 140 lb. hammer falling 30" on a 2" O.D. split-spoon. N:

Unconfined compressive strength, TSF. Qu:

Penetrometer value, unconfined compressive strength, TSF. Qp:

Moisture content, % Mc: Liquid limit, % LL: Plasiticity index, % PI:

Natural dry density, PCF. δd:

Apparent groundwater level at time noted after completion of boring. ▼:

DRILLING AND SAMPLING SYMBOLS

Not Encountered (Groundwater was not encountered) NE: Split-Spoon - 1%" I.D., 2" O.D., except where noted SS:

ST: Shelby Tube - 3" O.D., except where noted

AU: Auger Sample OB: Diamond Bit CB: Carbide Bit WS: Washed Sample

RELATIVE DENSITY AND CONSISTENCY CLASSIFICATION

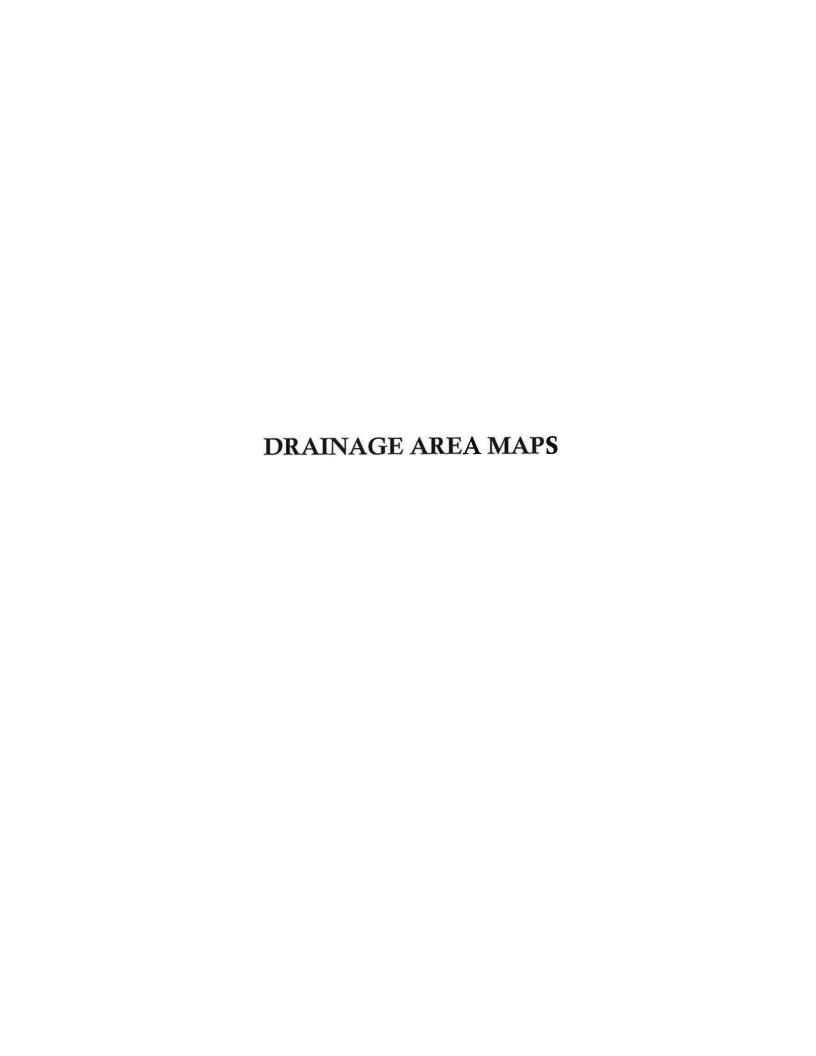
Term (Non-Cohesive Soils) 0-4 Very Loose 4-10 Loose 10-30 Medium Dense 30-50 Dense Over 50 Very Dense Ou (TSF) Term (Cohesive Soils)

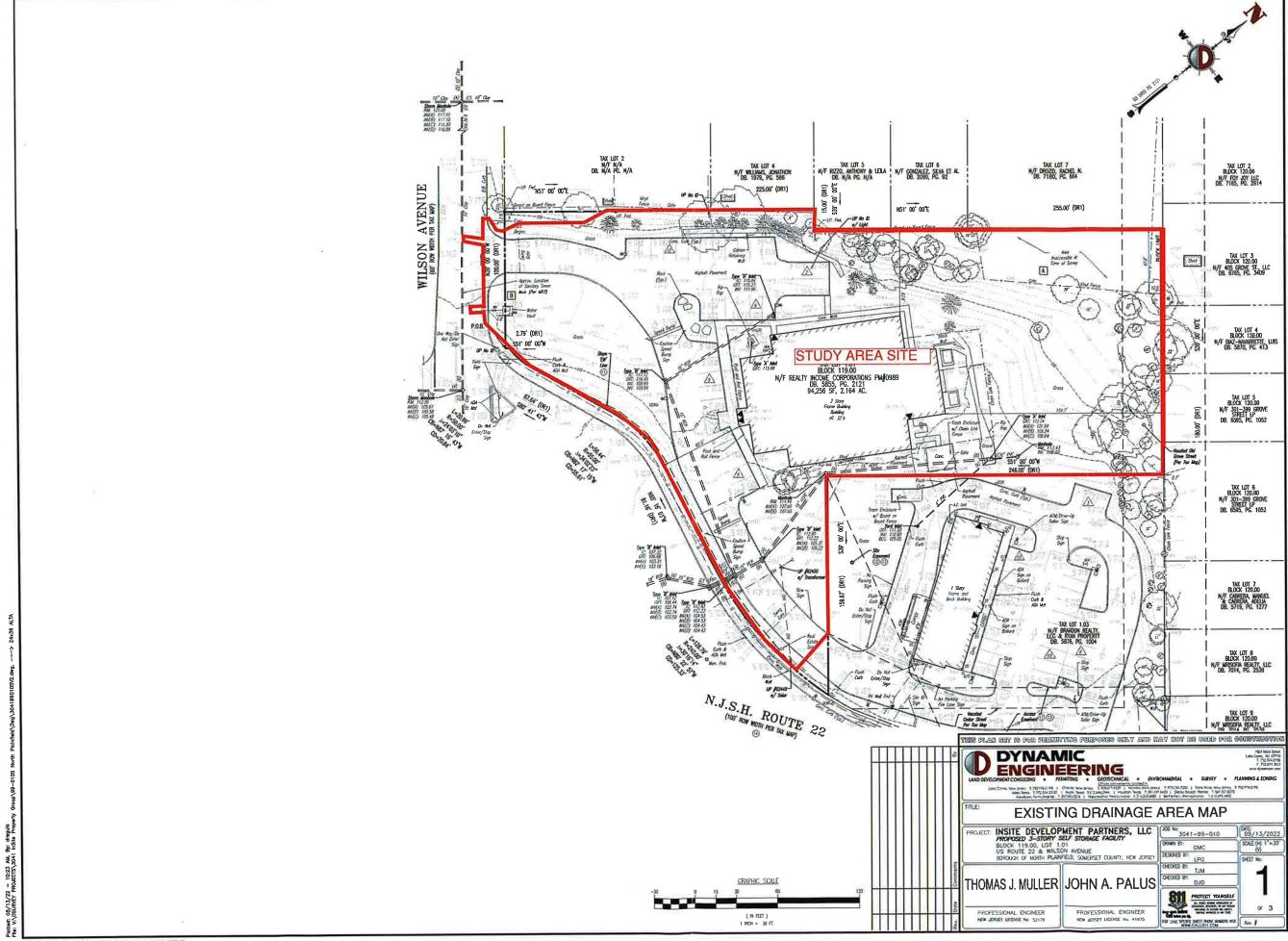
Very Soft	0-0.25
Soft	0.25-0.50
Firm (Medium)	0.50-1.00
Stiff	1.00-2.00
Very Stiff	2.00-4.00
Hard	4.00 +

PARTICLE SIZE

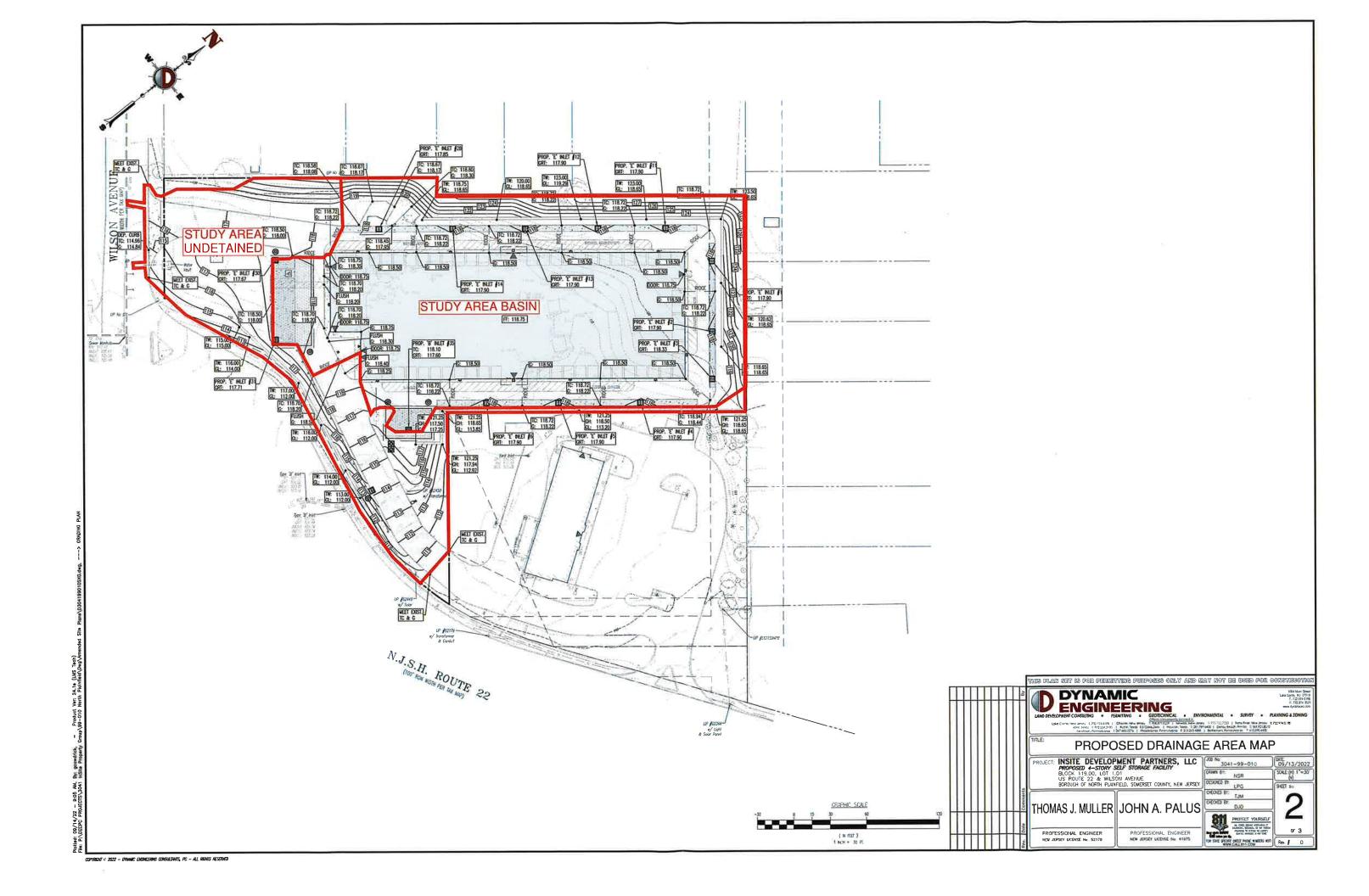
Boulders	8 in. +	Coarse Sand	5mm-0.6mm	Silt	0.074mm-0.005mm
Cobbles	8 in. -3 in.	Medium Sand	0.6mm-0.2mm	Clay	- 0.005mm
Gravel	3 in. – 5mm	Fine Sand	0.2 mm - 0.074 mm		

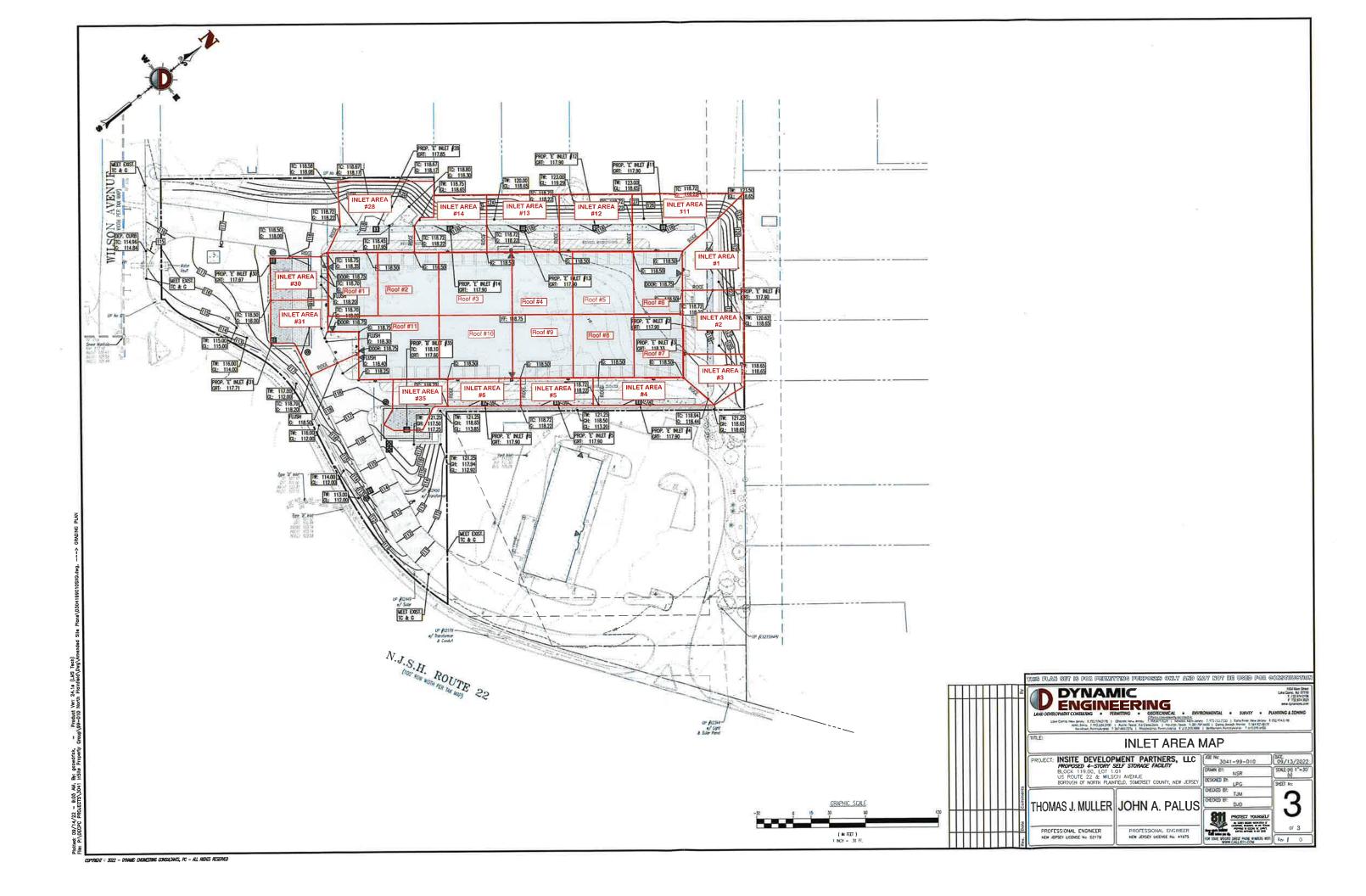
Standard Penetration Resistance


USCS Standard Classification System


UNIFIED SOIL CLASSIFICATION SYSTEM - ASTM D2488

	MAJOR DIVISION		GROUP SYMBOL	LETTER SYMBOL	GROUP NAME
		GRAVEL WITH	TX.	GW	Well-graded GRAVEL
		<u>* 5% FINES</u>		GP	Poorly graded GRAVEL
	GRAVEL AND GRAVELLY		Q	GW-GM	Well-graded GRAVEL with silt
	SOILS MORE THAN 50% OF	GRAVEL WITH BETWEEN 5%	改修	GW-GC	Well-graded GRAVEL with clay
	COARSE FRACTION	AND 15% FINES		GP-GM	Poorty graded GRAVEL with silt
	RETAINED ON NO. 4 SIEVE		0	GP-GC	Poorly graded GRAVEL with clay
COARSE		GRAVEL WITH	0000	GM	Sity GRAVEL
GRAINED SOILS		≥ 15% FINES		GC	Clayey GRAVEL
CONTAINS MORE THAN 50% FINES		SAND WITH		sw	Well-graded SAND
50% FINES	SAND AND	* 5% FINES		SP	Poorly graded SAND
				SW-SM	Well-graded SAND with silt
SANDY SOILS MORE THAN 50% OF	SAND WITH BETWEEN 5%		sw-sc	Well-graded SAND with clay	
	COARSE FRACTION PASSING ON NO. 4 SIEVE	OTION AND 15% FINES NG ON		SP-SM	Poorly graded SAND with silt
				SP-SC	Poorly graded SAND with clay
				SM	Silty SAND
				sc	Clayey SAND
				ML	Inorganic SILT with low plasticity
FINE		LIQUID LIMIT LESS THAN 50		CL	Lean inorganic CLAY with low plasticity
GRAINED SOILS	SILT	ii		OL	Organic SILT with low plasticity
CONTAINS CLAY				MH	Elastic inorganic SILT with moderate to high plasticity
50% FINES		LIQUID LIMIT GREATER THAN 50		СН	Fat inorganic CLAY with moderate to high plasticity
		11771 50		ОН	Organic SILT or CLAY with moderate to high plasticity
Н	IGHLY ORGANIC SO	DILS	20 20 20	PT	PEAT soils with high organic contents


NOTES:


- Sample descriptions are based on visual field and laboratory observations using classification methods of ASTM D2488. Where laboratory data are available, classifications are in accordance with ASTM D2487.
- 2) Solid lines between soil descriptions indicate change in interpreted geologic unit. Dashed lines indicate stratigraphic change within the unit.
- 3) Fines are material passing the U.S. Std. #200 Sieve.

COMBONE 2022 - DINNER BIONETING CONSUMES, PC - ALL ROVES RESIDED

